9,132 research outputs found

    Investigating the interstellar dust through the Fe K-edge

    Get PDF
    The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm210^{24}\ \rm{cm}^{-2}). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Shear flow, viscous heating, and entropy balance from dynamical systems

    Full text link
    A consistent description of a shear flow, the accompanied viscous heating, and the associated entropy balance is given in the framework of a deterministic dynamical system, where a multibaker dynamics drives two fields: the velocity and the temperature distributions. In an appropriate macroscopic limit their transport equations go over into the Navier-Stokes and the heat conduction equation of viscous flows. The inclusion of an artificial heat sink can stabilize steady states with constant temperatures. It mimics a thermostating algorithm used in non-equilibrium molecular-dynamics simulations.Comment: LaTeX 2e (epl.cls + sty-files for Europhys Lett included); 7 pages + 1 eps-figur

    Expert chess memory: Revisiting the chunking hypothesis

    Get PDF
    After reviewing the relevant theory on chess expertise, this paper re-examines experimentally the finding of Chase and Simon (1973a) that the differences in ability of chess players at different skill levels to copy and to recall positions are attributable to the experts' storage of thousands of chunks (patterned clusters of pieces) in long-term memory. Despite important differences in the experimental apparatus, the data of the present experiments regarding latencies and chess relations between successively placed pieces are highly correlated with those of Chase and Simon. We conclude that the 2-second inter-chunk interval used to define chunk boundaries is robust, and that chunks have psychological reality. We discuss the possible reasons why Masters in our new study used substantially larger chunks than the Master of the 1973 study, and extend the chunking theory to take account of the evidence for large retrieval structures (templates) in long-term memory

    Nonequilibrium quantum-impurities: from entropy production to information theory

    Full text link
    Nonequilibrium steady-state currents, unlike their equilibrium counterparts, continuously dissipate energy into their physical surroundings leading to entropy production and time-reversal symmetry breaking. This letter discusses these issues in the context of quantum impurity models driven out of equilibrium by attaching the impurity to leads at different chemical potentials and temperatures. We start by pointing out that entropy production is often hidden in traditional treatments of quantum-impurity models. We then use simple thermodynamic arguments to define the rate of entropy production. Using the scattering framework recently developed by the authors we show that the rate of entropy production has a simple information theoretic interpretation in terms of the Shannon entropy and Kullback-Leibler divergence of nonequilibrium distribution function. This allows us to show that the entropy production is strictly positive for any nonequilibrium steady-state. We conclude by applying these ideas to the Resonance Level Model and the Kondo model.Comment: 5 pages, 1 figure new version with minor clarification

    Inelastic X-ray Scattering by Electronic Excitations in Solids at High Pressure

    Get PDF
    Investigating electronic structure and excitations under extreme conditions gives access to a rich variety of phenomena. High pressure typically induces behavior such as magnetic collapse and the insulator-metal transition in 3d transition metals compounds, valence fluctuations or Kondo-like characteristics in ff-electron systems, and coordination and bonding changes in molecular solids and glasses. This article reviews research concerning electronic excitations in materials under extreme conditions using inelastic x-ray scattering (IXS). IXS is a spectroscopic probe of choice for this study because of its chemical and orbital selectivity and the richness of information it provides. Being an all-photon technique, IXS has a penetration depth compatible with high pressure requirements. Electronic transitions under pressure in 3d transition metals compounds and ff-electron systems, most of them strongly correlated, are reviewed. Implications for geophysics are mentioned. Since the incident X-ray energy can easily be tuned to absorption edges, resonant IXS, often employed, is discussed at length. Finally studies involving local structure changes and electronic transitions under pressure in materials containing light elements are briefly reviewed.Comment: submitted to Rev. Mod. Phy

    Chemical Potential and the Nature of the Dark Energy: The case of phantom

    Full text link
    The influence of a possible non zero chemical potential μ\mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state (EoS), p=ωρp=\omega \rho (ω<0,constant\omega <0, constant). The entropy condition, S0S \geq 0, implies that the possible values of ω\omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For μ>0\mu >0, the ω\omega-parameter must be greater than -1 (vacuum is forbidden) while for μ<0\mu < 0 not only the vacuum but even a phantomlike behavior (ω<1\omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, μ/T=μ0/T0\mu/T=\mu_0/T_0. Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons μ\mu is always negative and the extended Wien's law allows only a dark component with ω<1/2\omega < -1/2 which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for μ0\mu 0 are permmited only if 1<ω<1/2-1 < \omega < -1/2. The thermodynamics and statistical arguments constrain the EoS parameter to be ω<1/2\omega < -1/2, a result surprisingly close to the maximal value required to accelerate a FRW type universe dominated by matter and dark energy (ω10/21\omega \lesssim -10/21).Comment: 7 pages, 5 figure

    A Fast Hadron Freeze-out Generator

    Get PDF
    We have developed a fast Monte Carlo procedure of hadron generation allowing one to study and analyze various observables for stable hadrons and hadron resonances produced in ultra-relativistic heavy ion collisions. Particle multiplicities are determined based on the concept of chemical freeze-out. Particles can be generated on the chemical or thermal freeze-out hypersurface represented by a parameterization or a numerical solution of relativistic hydrodynamics with given initial conditions and equation of state. Besides standard space-like sectors associated with the volume decay, the hypersurface may also include non-space-like sectors related to the emission from the surface of expanding system. For comparison with other models and experimental data we demonstrate the results based on the standard parameterizations of the hadron freeze-out hypersurface and flow velocity profile under the assumption of a common chemical and thermal freeze-out. The C++ generator code is written under the ROOT framework and is available for public use at http://uhkm.jinr.ru/.Comment: 28 pages,7 figure

    Thermo-Electric Properties of Quantum Point Contacts

    Full text link
    I. Introduction II. Theoretical background (Landauer-Buttiker formalism of thermo-electricity, Quantum point contacts as ideal electron waveguides, Saddle-shaped potential) III. Experiments (Thermopower, Thermal conductance, Peltier effect) IV. ConclusionsComment: #4 of a series of 4 legacy reviews on QPC'

    Linking the hydrodynamic and kinetic description of a dissipative relativistic conformal theory

    Full text link
    We use the entropy production variational method to associate a one particle distribution function to the assumed known energy-momentum and entropy currents describing a relativistic conformal fluid. Assuming a simple form for the collision operator we find this one particle distribution function explicitly, and show that this method of linking the hydro and kinetic description is a non trivial generalization of Grad's ansatz. The resulting constitutive relations are the same as in the conformal dissipative type theories discussed in J. Peralta-Ramos and E. Calzetta, Phys. Rev. D {\bfseries 80}, 126002 (2009). Our results may prove useful in the description of freeze-out in ultrarelativistic heavy-ion collisions.Comment: v2: 23 pages, no figures, accepted in Phys. Rev.

    Olfactomedin 4 Serves as a Marker for Disease Severity in Pediatric Respiratory Syncytial Virus (RSV) Infection

    Get PDF
    Funding: Statement of financial support: The study was financially supported by the VIRGO consortium, an Innovative Cluster approved by the Netherlands Genomics Initiative and partially funded by the Dutch Government (BSIK 03012). The authors have indicated they have no personal financial relationships relevant to this article to disclose. Data Availability Statement: The data is accessible at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69606.Peer reviewedPublisher PD
    corecore