259 research outputs found

    Stability and mode analysis of solar coronal loops using thermodynamic irreversible energy principles

    Full text link
    We study the modes and stability of non - isothermal coronal loop models with different intensity values of the equilibrium magnetic field. We use an energy principle obtained via non - equilibrium thermodynamic arguments. The principle is expressed in terms of Hermitian operators and allow to consider together the coupled system of equations: the balance of energy equation and the equation of motion. We determine modes characterized as long - wavelength disturbances that are present in inhomogeneous media. This character of the system introduces additional difficulties for the stability analysis because the inhomogeneous nature of the medium determines the structure of the disturbance, which is no longer sinusoidal. Moreover, another complication is that we obtain a continuous spectrum of stable modes in addition to the discrete one. We obtain a unique unstable mode with a characteristic time that is comparable with the characteristic life-time observed for loops. The feasibility of wave-based and flow-based models is examined.Comment: 29 pages 10 figure

    Barrett's lesion detection using a minimal integer-based neural network for embedded systems integration

    Get PDF
    Embedded processing architectures are often integrated into devices to develop novel functions in a cost-effective medical system. In order to integrate neural networks in medical equipment, these models require specialized optimizations for preparing their integration in a high-efficiency and power-constrained environment. In this paper, we research the feasibility of quantized networks with limited memory for the detection of Barrett’s neoplasia. An Efficientnet-lite1+Deeplabv3 architecture is proposed, which is trained using a quantization-aware training scheme, in order to achieve an 8-bit integer-based model. The performance of the quantized model is comparable with float32 precision models. We show that the quantized model with only 5-MB memory is capable of reaching the same performance scores with 95% Area Under the Curve (AUC), compared to a fullprecision U-Net architecture, which is 10× larger. We have also optimized the segmentation head for efficiency and reduced the output to a resolution of 32×32 pixels. The results show that this resolution captures sufficient segmentation detail to reach a DICE score of 66.51%, which is comparable to the full floating-point model. The proposed lightweight approach also makes the model quite energy-efficient, since it can be real-time executed on a 2-Watt Coral Edge TPU. The obtained low power consumption of the lightweight Barrett’s esophagus neoplasia detection and segmentation system enables the direct integration into standard endoscopic equipment

    Torsional Alfven waves in stratified and expanding magnetic flux tubes

    Full text link
    The effects of both density stratification and magnetic field expansion on torsional Alfven waves in magnetic flux tubes are studied. The frequencies, the period ratio P1/P2 of the fundamental and its first-overtone, and eigenfunctions of torsional Alfven modes are obtained. Our numerical results show that the density stratification and magnetic field expansion have opposite effects on the oscillating properties of torsional Alfven waves.Comment: 13 pages, 7 figures, Accepted for publication in Astrophysics and Space Scienc

    Excitation of standing kink oscillations in coronal loops

    Full text link
    In this work we review the efforts that have been done to study the excitation of the standing fast kink body mode in coronal loops. We mainly focus on the time-dependent problem, which is appropriate to describe flare or CME induced kink oscillations. The analytical and numerical studies in slab and cylindrical loop geometries are reviewed. We discuss the results from very simple one-dimensional models to more realistic (but still simple) loop configurations. We emphasise how the results of the initial value problem complement the eigenmode calculations. The possible damping mechanisms of the kink oscillations are also discussed

    Neural Correlates of Behavioural Olfactory Sensitivity Changes Seasonally in European Starlings

    Get PDF
    Possibly due to the small size of the olfactory bulb (OB) as compared to rodents, it was generally believed that songbirds lack a well-developed sense of smell. This belief was recently revised by several studies showing that various bird species, including passerines, use olfaction in many respects of life. During courtship and nest building, male European starlings (Sturnus vulgaris) incorporate aromatic herbs that are rich in volatile compounds (e.g., milfoil, Achillea millefolium) into the nests and they use olfactory cues to identify these plants. Interestingly, European starlings show seasonal differences in their ability to respond to odour cues: odour sensitivity peaks during nest-building in the spring, but is almost non-existent during the non-breeding season.This study used repeated in vivo Manganese-enhanced MRI to quantify for the first time possible seasonal changes in the anatomy and activity of the OB in starling brains. We demonstrated that the OB of the starling exhibits a functional seasonal plasticity of certain plant odour specificity and that the OB is only able to detect milfoil odour during the breeding season. Volumetric analysis showed that this seasonal change in activity is not linked to a change in OB volume. By subsequently experimentally elevating testosterone (T) in half of the males during the non-breeding season we showed that the OB volume was increased compared to controls.By investigating the neural substrate of seasonal olfactory sensitivity changes we show that the starlings' OB loses its ability during the non-breeding season to detect a natural odour of a plant preferred as green nest material by male starlings. We found that testosterone, applied during the non-breeding season, does not restore the discriminatory ability of the OB but has an influence on its size

    On Solving the Coronal Heating Problem

    Full text link
    This article assesses the current state of understanding of coronal heating, outlines the key elements of a comprehensive strategy for solving the problem, and warns of obstacles that must be overcome along the way.Comment: Accepted by Solar Physics; Published by Solar Physic

    A virtual appliance as proxy pipeline for the Solar Orbiter/Metis coronagraph

    Get PDF
    Metis is the coronagraph on board Solar Orbiter, the ESA mission devoted to the study of the Sun that will be launched in October 2018. Metis is designed to perform imaging of the solar corona in the UV at 121.6 nm and in the visible range where it will accomplish polarimetry studies thanks to a variable retarder plate. Due to mission constraints, the telemetry downlink on the spacecraft will be limited and data will be downloaded with delays that could reach, in the worst case, several months. In order to have a quick overview on the ongoing operations and to check the safety of the 10 instruments on board, a high-priority downlink channel has been foreseen to download a restricted amount of data. These so-called Low Latency Data will be downloaded daily and, since they could trigger possible actions, they have to be quickly processed on ground as soon as they are delivered. To do so, a proper processing pipeline has to be developed by each instrument. This tool will then be integrated in a single system at the ESA Science Operation Center that will receive the downloaded data by the Mission Operation Center. This paper will provide a brief overview of the on board processing and data produced by Metis and it will describe the proxy-pipeline currently under development to deal with the Metis low-latency data

    Development and psychometric evaluation of the CO-PARTNER tool for collaboration and parent participation in neonatal care

    Get PDF
    Background Active parent participation in neonatal care and collaboration between parents and professionals during infant hospitalization in the neonatal intensive care unit (NICU) is beneficial for infants and their parents. A tool is needed to support parents and to study the effects and implementation of parent-partnered models of neonatal care.Methods We developed and psychometrically evaluated a tool measuring active parent participation and collaboration in neonatal care within six domains: Daily Care, Medical Care, Acquiring Information, Parent Advocacy, Time Spent with Infant and Closeness and Comforting the Infant. Items were generated in focus group discussions and in-depth interviews with professionals and parents. The tool was completed at NICU-discharge by 306 parents (174 mothers and 132 fathers) of preterm infants. Subsequently, we studied structural validity with confirmatory factor analysis (CFA), construct validity, using the Average Variance Extracted and Heterotrait-Monotrait ratio of correlations, and hypothesis testing with correlations and univariate linear regression. For internal consistency we calculated composite reliability (CR). We performed multiple imputations by chained equations for missing data.Results A 31 item tool for parent participation and collaboration in neonatal care was developed. CFA revealed high factor loadings of items within each domain. Internal consistency was 0.558 to 0.938. Convergent validity and discriminant validity were strong. Higher scores correlated with less parent depressive symptoms (r = -0.141, 95%CI -0.240; -0.029, p = 0.0141), less impaired parent-infant bonding (r = -0.196, 95%CI -0.302; -0.056, pConclusion The CO-PARTNER tool explicitly measures parents' participation and collaboration with professionals in neonatal care incorporating their unique roles in care provision, leadership, and connection to their infant. The tool consists of 31 items within six domains with good face, content, construct and structural validity.</p

    A deep learning system for detection of early Barrett's neoplasia:a model development and validation study

    Get PDF
    BACKGROUND: Computer-aided detection (CADe) systems could assist endoscopists in detecting early neoplasia in Barrett's oesophagus, which could be difficult to detect in endoscopic images. The aim of this study was to develop, test, and benchmark a CADe system for early neoplasia in Barrett's oesophagus.METHODS: The CADe system was first pretrained with ImageNet followed by domain-specific pretraining with GastroNet. We trained the CADe system on a dataset of 14 046 images (2506 patients) of confirmed Barrett's oesophagus neoplasia and non-dysplastic Barrett's oesophagus from 15 centres. Neoplasia was delineated by 14 Barrett's oesophagus experts for all datasets. We tested the performance of the CADe system on two independent test sets. The all-comers test set comprised 327 (73 patients) non-dysplastic Barrett's oesophagus images, 82 (46 patients) neoplastic images, 180 (66 of the same patients) non-dysplastic Barrett's oesophagus videos, and 71 (45 of the same patients) neoplastic videos. The benchmarking test set comprised 100 (50 patients) neoplastic images, 300 (125 patients) non-dysplastic images, 47 (47 of the same patients) neoplastic videos, and 141 (82 of the same patients) non-dysplastic videos, and was enriched with subtle neoplasia cases. The benchmarking test set was evaluated by 112 endoscopists from six countries (first without CADe and, after 6 weeks, with CADe) and by 28 external international Barrett's oesophagus experts. The primary outcome was the sensitivity of Barrett's neoplasia detection by general endoscopists without CADe assistance versus with CADe assistance on the benchmarking test set. We compared sensitivity using a mixed-effects logistic regression model with conditional odds ratios (ORs; likelihood profile 95% CIs).FINDINGS: Sensitivity for neoplasia detection among endoscopists increased from 74% to 88% with CADe assistance (OR 2·04; 95% CI 1·73-2·42; p&lt;0·0001 for images and from 67% to 79% [2·35; 1·90-2·94; p&lt;0·0001] for video) without compromising specificity (from 89% to 90% [1·07; 0·96-1·19; p=0·20] for images and from 96% to 94% [0·94; 0·79-1·11; ] for video; p=0·46). In the all-comers test set, CADe detected neoplastic lesions in 95% (88-98) of images and 97% (90-99) of videos. In the benchmarking test set, the CADe system was superior to endoscopists in detecting neoplasia (90% vs 74% [OR 3·75; 95% CI 1·93-8·05; p=0·0002] for images and 91% vs 67% [11·68; 3·85-47·53; p&lt;0·0001] for video) and non-inferior to Barrett's oesophagus experts (90% vs 87% [OR 1·74; 95% CI 0·83-3·65] for images and 91% vs 86% [2·94; 0·99-11·40] for video).INTERPRETATION: CADe outperformed endoscopists in detecting Barrett's oesophagus neoplasia and, when used as an assistive tool, it improved their detection rate. CADe detected virtually all neoplasia in a test set of consecutive cases.FUNDING: Olympus.</p

    Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer cells simultaneously exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen, a phenomenon known as the Warburg effect. The maintenance of this mixed metabolic phenotype is seemingly counterintuitive given that aerobic glycolysis is far less efficient in terms of ATP yield per moles of glucose than mitochondrial respiration.</p> <p>Results</p> <p>Here, we resolve this apparent contradiction by expanding the notion of metabolic efficiency. We study a reduced flux balance model of ATP production that is constrained by the glucose uptake capacity and by the solvent capacity of the cell's cytoplasm, the latter quantifying the maximum amount of macromolecules that can occupy the intracellular space. At low glucose uptake rates we find that mitochondrial respiration is indeed the most efficient pathway for ATP generation. Above a threshold glucose uptake rate, however, a gradual activation of aerobic glycolysis and slight decrease of mitochondrial respiration results in the highest rate of ATP production.</p> <p>Conclusions</p> <p>Our analyses indicate that the Warburg effect is a favorable catabolic state for all rapidly proliferating mammalian cells with high glucose uptake capacity. It arises because while aerobic glycolysis is less efficient than mitochondrial respiration in terms of ATP yield per glucose uptake, it is more efficient in terms of the required solvent capacity. These results may have direct relevance to chemotherapeutic strategies attempting to target cancer metabolism.</p
    • …
    corecore