5,154 research outputs found

    Noncommutativity relations in type IIB theory and their supersymmetry

    Full text link
    In the present paper we investigate noncommutativity of D9D9 and D5D5-brane world-volumes embedded in space-time of type IIB superstring theory. Boundary conditions, which preserve half of the initial supersymmetry, are treated as canonical constraints. Solving the constraints we obtain original coordinates in terms of the effective coordinates and momenta. Presence of momenta induces noncommutativity of string endpoints. We show that noncommutativity relations are connected by N=1 supersymmetry transformations and noncommutativity parameters are components of N=1 supermultiplet

    Drug Release from Viscoelastic Swelling Polymeric Platforms

    Get PDF
    We consider a polymeric spherical platform containing a solid dispersed drug that is in contact with a solvent fluid. While swelling, a non-Fickian sorption of the solvent molecules occurs induced by the effect of the viscoelastic properties of the polymer. The solid drug in contact with the solvent fluid dissolves and a Fickian release of dissolved drug takes place. The fluid entrance, the drug dissolution, and the drug release to an external environment are described by a system of PDEs complemented with an equation for the swelling front, initial, and boundary conditions. The model includes the two major factors that govern a swelling process of a polymeric platform within a release medium: the cross-link density and the concentration of the external medium. Energy estimates for the mass of solvent fluid and of undissolved and dissolved drug in the polymeric platform are established. Numerical simulations that illustrate the theoretical results are also included

    On maximally supersymmetric Yang-Mills theories

    Full text link
    We consider ten-dimensional supersymmetric Yang-Mills theory (10D SUSY YM theory) and its dimensional reductions, in particular, BFSS and IKKT models. We formulate these theories using algebraic techniques based on application of differential graded Lie algebras and associative algebras as well as of more general objects, L_{\infty}- and A_{\infty}- algebras. We show that using pure spinor formulation of 10D SUSY YM theory equations of motion and isotwistor formalism one can interpret these equations as Maurer-Cartan equations for some differential Lie algebra. This statement can be used to write BV action functional of 10D SUSY YM theory in Chern-Simons form. The differential Lie algebra we constructed is closely related to differential associative algebra Omega of (0, k)-forms on some supermanifold; the Lie algebra is tensor product of Omega and matrix algebra . We construct several other algebras that are quasiisomorphic to Omega and, therefore, also can be used to give BV formulation of 10D SUSY YM theory and its reductions. In particular, Omega is quasiisomorphic to the algebra B constructed by Berkovits. The algebras Omega_0 and B_0 obtained from Omega and B by means of reduction to a point can be used to give a BV-formulation of IKKT model. We introduce associative algebra SYM as algebra where relations are defined as equations of motion of IKKT model and show that Koszul dual to the algebra B_0 is quasiisomorphic to SYM.Comment: 43 pages. Details are added in the construction of trace in section 4. Added references. Formula for vector filed E on p.5,11 correcte

    Super D-branes from BRST Symmetry

    Full text link
    Recently a new formalism has been developed for the covariant quantization of superstrings. We study properties of Dp-branes and p-branes in this new framework, focusing on two different topics: effective actions and boundary states for Dp-branes. We present a derivation of the Wess-Zumino terms for super (D)p-branes using BRST symmetry. To achieve this we derive the BRST symmetry for superbranes, starting from the approach with/without pure spinors, and completely characterize the WZ terms as elements of the BRST cohomology. We also develope the boundary state description of Dp-branes by analyzing the boundary conditions for open strings in the completely covariant (i.e., without pure spinors) BRST formulation.Comment: 31 pp; journal version, expended discussion of D-brane pure spinor constraints in Section 2.

    Toric Calabi-Yau Fourfolds, Duality Between N=1 Theories and Divisors that Contribute to the Superpotential

    Get PDF
    We study issues related to F-theory on Calabi-Yau fourfolds and its duality to heterotic theory for Calabi-Yau threefolds. We discuss principally fourfolds that are described by reflexive polyhedra and show how to read off some of the data for the heterotic theory from the polyhedron. We give a procedure for constructing examples with given gauge groups and describe some of these examples in detail. Interesting features arise when the local pieces are fitted into a global manifold. An important issue is how to compute the superpotential explicitly. Witten has shown that the condition for a divisor to contribute to the superpotential is that it have arithmetic genus 1. Divisors associated with the short roots of non-simply laced gauge groups do not always satisfy this condition while the divisors associated to all other roots do. For such a `dissident' divisor we distinguish cases for which the arithmetic genus is greater than unity corresponding to an X that is not general in moduli (in the toric case this corresponds to the existence of non-toric parameters). In these cases the `dissident' divisor D does not remain an effective divisor for general complex structure. If however the arithmetic genus is less than or equal to 0, then the divisor is general in moduli and there is a genuine instability

    F-theory on Genus-One Fibrations

    Get PDF
    We argue that M-theory compactified on an arbitrary genus-one fibration, that is, an elliptic fibration which need not have a section, always has an F-theory limit when the area of the genus-one fiber approaches zero. Such genus-one fibrations can be easily constructed as toric hypersurfaces, and various SU(5)Ă—U(1)nSU(5)\times U(1)^n and E6E_6 models are presented as examples. To each genus-one fibration one can associate a Ď„\tau-function on the base as well as an SL(2,Z)SL(2,\mathbb{Z}) representation which together define the IIB axio-dilaton and 7-brane content of the theory. The set of genus-one fibrations with the same Ď„\tau-function and SL(2,Z)SL(2,\mathbb{Z}) representation, known as the Tate-Shafarevich group, supplies an important degree of freedom in the corresponding F-theory model which has not been studied carefully until now. Six-dimensional anomaly cancellation as well as Witten's zero-mode count on wrapped branes both imply corrections to the usual F-theory dictionary for some of these models. In particular, neutral hypermultiplets which are localized at codimension-two fibers can arise. (All previous known examples of localized hypermultiplets were charged under the gauge group of the theory.) Finally, in the absence of a section some novel monodromies of Kodaira fibers are allowed which lead to new breaking patterns of non-Abelian gauge groups.Comment: 53 pages, 9 figures, 6 tables. v2: references adde

    Evidence-Based Dentistry: What's New?

    Get PDF
    The importance of evidence for every branch of medicine in teaching in order to orient the practitioners among the great amount of most actual scientific information's, and to support clinical decisions, is well established in health care, including dentistry

    Extensions, expansions, Lie algebra cohomology and enlarged superspaces

    Full text link
    After briefly reviewing the methods that allow us to derive consistently new Lie (super)algebras from given ones, we consider enlarged superspaces and superalgebras, their relevance and some possible applications.Comment: 9 pages. Invited talk delivered at the EU RTN Workshop, Copenhagen, Sep. 15-19 and at the Argonne Workshop on Branes and Generalized Dynamics, Oct. 20-24, 2003. Only change: wrong number of a reference correcte

    Membranes for Topological M-Theory

    Full text link
    We formulate a theory of topological membranes on manifolds with G_2 holonomy. The BRST charges of the theories are the superspace Killing vectors (the generators of global supersymmetry) on the background with reduced holonomy G_2. In the absence of spinning formulations of supermembranes, the starting point is an N=2 target space supersymmetric membrane in seven euclidean dimensions. The reduction of the holonomy group implies a twisting of the rotations in the tangent bundle of the branes with ``R-symmetry'' rotations in the normal bundle, in contrast to the ordinary spinning formulation of topological strings, where twisting is performed with internal U(1) currents of the N=(2,2) superconformal algebra. The double dimensional reduction on a circle of the topological membrane gives the strings of the topological A-model (a by-product of this reduction is a Green-Schwarz formulation of topological strings). We conclude that the action is BRST-exact modulo topological terms and fermionic equations of motion. We discuss the role of topological membranes in topological M-theory and the relation of our work to recent work by Hitchin and by Dijkgraaf et al.Comment: 22 pp, plain tex. v2: refs. adde
    • …
    corecore