41 research outputs found

    Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Micro-computed tomography (micro-CT) is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time.</p> <p>Methods</p> <p>Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1). Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis.</p> <p>Results</p> <p>We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed.</p> <p>Conclusions</p> <p>Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals.</p

    Contrasting Geographical Distributions as a Result of Thermal Tolerance and Long-Distance Dispersal in Two Allegedly Widespread Tropical Brown Algae

    Get PDF
    BackgroundMany tropical marine macroalgae are reported from all three ocean basins, though these very wide distributions may simply be an artifact resulting from inadequate taxonomy that fails to take into account cryptic diversity. Alternatively, pantropical distributions challenge the belief of limited intrinsic dispersal capacity of marine seaweeds and the effectiveness of the north-south oriented continents as dispersal barriers. We aimed to re-assess the distribution of two allegedly circumtropical brown algae, Dictyota ciliolata and D. crenulata, and interpret the realized geographical range of the respective species in relation to their thermal tolerance and major tectonic and climatic events during the Cenozoic.Methodology/Principal FindingsSpecies delimitation was based on 184 chloroplast encoded psbA sequences, using a Generalized Mixed Yule Coalescent method. Phylogenetic relationships were inferred by analyzing a six-gene dataset. Divergence times were estimated using relaxed molecular clock methods and published calibration data. Distribution ranges of the species were inferred from DNA-confirmed records, complemented with credible literature data and herbarium vouchers. Temperature tolerances of the species were determined by correlating distribution records with local SST values. We found considerable conflict between traditional and DNA-based species definitions. Dictyota crenulata consists of several pseudocryptic species, which have restricted distributions in the Atlantic Ocean and Pacific Central America. In contrast, the pantropical distribution of D. ciliolata is confirmed and linked to its significantly wider temperature tolerance.Conclusions/SignificanceTectonically driven rearrangements of physical barriers left an unequivocal imprint on the current diversity patterns of marine macroalgae, as witnessed by the D. crenulata–complex. The nearly circumglobal tropical distribution of D. ciliolata, however, demonstrates that the north-south oriented continents do not present absolute dispersal barriers for species characterized by wide temperature tolerances

    Phylogeny in Aid of the Present and Novel Microbial Lineages: Diversity in Bacillus

    Get PDF
    Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed

    Membrane type 1 matrix metalloproteinase detection in tumors, using the iodinated endogenous [123I]-tissue inhibitor 2 of metalloproteinases as imaging agent.

    Get PDF
    Matrix metalloproteinases (MMPs) are principal participants in tumor development. In addition to serve as a useful biochemical marker, MMP expression may also provide a target for the diagnostic in vivo imaging of tumors, using a radiolabeled inhibitor. This study investigates the use of membrane type 1 (MT1)-MMP as target for in vivo tumor diagnosis. Specific binding of the endogenous tissue inhibitor of metalloproteinase-2 (TIMP-2) to MT1-MMP has been previously described. In this study, biodistribution and imaging experiments were performed on MT1-MMP-overexpressing (S.1.5) and control (C.IV.3) tumor-inoculated mice using [(123)I]-recombinant human TIMP-2 (rhTIMP-2) as radioligand and [(123)I]-rhTIMP-1 as control. The expression profile was controlled in vitro and on tumor extracts. rhTIMP-2 as well as rhTIMP-1 were labeled using the Iodogen method and characterized. Biodistribution of [(123)I]-rhTIMP-2 showed a tumor uptake of 2.87% +/- 1.58% ID/g at 3 hours postinjection in S.1.5. Tumor values of [(123)I]-rhTIMP-1 and [(123)I]-rhTIMP-2 evaluated in S.1.5 and C.IV.3, respectively, were significantly lower. Planar imaging revealed significant uptake of [(123)I]-rhTIMP-2 in S.1.5 compared with contralateral background areas. This could not be observed in C.IV.3 and with [(123)I]-rhTIMP-1 in S.1.5. All tumors were well established (200-800 mg). These results suggest that rhTIMP-2 holds potential for development of radiotracers for in vivo imaging in overexpressing MT1-MMP but not in similar tumors that do not express this protease
    corecore