7 research outputs found

    Upcycling Waste Plastics into Multi-Walled Carbon Nanotube Composites via NiCo₂O₄ Catalytic Pyrolysis

    Get PDF
    In this work, multi-walled carbon nanotube composites (MWCNCs) were produced by catalytic pyrolysis of post-consumer plastics with aluminium oxide-supported nickel, cobalt, and their bimetallic (Ni/α–Al₂O₃, Co/α–Al₂O₃, and NiCo/α–Al₂O₃) oxide-based catalysts. The influence of catalyst composition and catalytic reaction temperature on the carbon yield and structure of CNCs were investigated. Different temperatures (800, 900, 950, and 1000°C) and catalyst compositions (Ni, Co, and Ni/Co) were explored to maximize the yield of carbon deposited on the catalyst. The obtained results showed that at the same catalytic temperature (900°C), a Ni/Co bimetallic catalyst exhibited higher carbon yield than the individual monometallic catalysts due to a better cracking capability on carbon-hydrogen bonds. With the increase of temperature, the carbon yield of the Ni/Co bimetallic catalyst increased first and then decreased. At a temperature of 950°C, the Ni/Co bimetallic catalyst achieved its largest carbon yield, which can reach 255 mg g⁻Âč plastic. The growth of CNCs followed a “particle-wire-tube” mechanism for all studied catalysts. This work finds the potential application of complex oxide composite material catalysts for the generation of CNCs in catalytic pyrolysis of wasted plastic

    New insights on lithium storage in silicon oxycarbide/carbon composites: Impact of microstructure on electrochemical properties

    No full text
    In this work, we study the impact of the preceramic precursor vinyltriethoxysilane (VTES) on the electrochemical performance of silicon oxycarbide (SiOC) glass/graphite composites. We apply an innovative approach based on high-power ultrasounds in order to obtain highly homogenous composites with a uniform distribution of small graphitic flakes. This procedure enhances gelation and drying of VTES-based preceramic polymer/graphite blends. The SiOC/graphite composites reveal stable capacities (up to 520 mAh g-1 after 270 cycles), which are much higher than the sum derived from the ratio of the components. Additionally, the first cycle Coulombic efficiencies obtained for the composites are 15% higher than that of the pristine VTES-based SiOC ceramic. These properties are identified as the synergistic effect, originated from the addition of graphite to VTES-based SiOCs. Interestingly, such improvement in electrochemical performance is not noticed in the case of analogous SiOC/ graphite composites based on phenyltriethoxysilane (PhTES) precursor. The microstructural investigation of the composites based on two different preceramic precursors using solid-state 29Si NMR and Raman Spectroscopy unveils the reason for such discrepancy in their electrochemical behaviour. Keyword

    Self-Supporting Metal Nanotube Networks Obtained by Highly Conformal Electroless Plating

    No full text
    We present a versatile approach for the fabrication of well-defined networks of interconnected metal nanotubes, which applies electroless plating to ion-track-etched polymer templates that enclose designed pore networks. In order to obtain self-supporting structures, the deposition reactions must be optimized to yield conformal nanoscale metal films on microstructured substrates possessing extensive inner surfaces. Using this route, gold, copper, silver, nickel, and platinum nanotube networks are synthesized. The resulting structures can be handled macroscopically and combine a large surface area with continuous mass transport and conduction pathways, rendering them promising for application in, for example, electrocatalysis and sensing. This potential is demonstrated by employing a gold nanotube network for the amperometric detection of hydrogen peroxide, in which excellent sensitivity, catalyst utilization, and stability is achieved

    Towards a Greener and Scalable Synthesis of Na 2 Ti 6 O 13 Nanorods and Their Application as Anodes in Batteries for Grid‐Level Energy Storage

    No full text
    Grid applications require high power density (for frequency regulation, load leveling, and renewable energy integration), achievable by combining multiple batteries in a system without strict high capacity requirements. For these applications however, safety, cost efficiency, and the lifespan of electrode materials are crucial. Titanates, safe and longevous anode materials providing much lower energy density than graphite, are excellent candidates for this application. The innovative molten salt synthesis approach proposed in this work provides exceptionally pure Na2Ti6O13 nanorods generated at 900-1100 degrees C in a yield >= 80 wt%. It is fast, cost-efficient, and suitable for industrial upscaling. Electrochemical tests reveal stable performance providing capacities of approximate to 100 mA h g(-1) (Li) and 40 mA h g(-1) (Na). Increasing the synthesis temperature to 1100 degrees C leads to a capacity decrease, most likely resulting from 1) the morphology/volume change with the synthesis temperature and 2) distortion of the Na2Ti6O13 tunnel structure indicated by electron energy-loss and Raman spectroscopy. The suitability of pristine Na2Ti6O13 as the anode for grid-level energy storage systems has been proven a priori, without any performance-boosting treatment, indicating considerable application potential especially due to the high yield and low cost of the synthesis route

    Phase evolution of SiOC‐based ceramic nanocomposites derived from a polymethylsiloxane modified by Hf‐ and Ti‐alkoxides

    No full text
    SiOC/HfO2‐based ceramic nanocomposites with in situ formed HfO2 nanoparticles were prepared via a single‐source precursor (SSP) approach starting from a polymethylsilsesquioxane (PMS) modified by Hf‐ and Ti‐alkoxides. By varying the alkyl‐group of the employed Hf‐alkoxides, SiOC/HfO2‐based ceramic nanocomposites with different HfO2 polymorphs formed via thermal decomposition of the SSP under the same heat‐treatment conditions. Using PMS chemically modified by Hf(OnBu)4, tetragonal HfO2 phase was formed after the synthesis at 1100°C in Ar, whereas both, tetragonal and monoclinic HfO2 nanocrystals, were analyzed when replacing Hf(OnBu)4 by Hf(OiPr)4. After oxidation of the synthesized nanocomposites in air at 1500°C, a facile formation of oxidation‐resistant HfSiO4 (hafnon) phase occurred by the reaction of HfO2 nanocrystals with silica present in the SiOC nanocomposite matrix derived from Hf(OiPr)4‐modified SSPs. Moreover the amount of hafnon is dramatically increased by the additional modification of the polysiloxane with Ti‐alkoxides. In contrast, ceramic nanocomposites derived from Hf(OnBu)4‐modified SSPs, almost no HfSiO4 is detected after oxidation at 1500°C even though in the case of Ti‐alkoxide‐modified single‐source precursor

    Upcycling Waste Plastics into Multi-Walled Carbon Nanotube Composites via NiCo2O4 Catalytic Pyrolysis

    No full text
    In this work, multi-walled carbon nanotube composites (MWCNCs) were produced by catalytic pyrolysis of post-consumer plastics with aluminium oxide-supported nickel, cobalt, and their bimetallic (Ni/α–Al2O3, Co/α–Al2O3, and NiCo/α–Al2O3) oxide-based catalysts. The influence of catalyst composition and catalytic reaction temperature on the carbon yield and structure of CNCs were investigated. Different temperatures (800, 900, 950, and 1000 °C) and catalyst compositions (Ni, Co, and Ni/Co) were explored to maximize the yield of carbon deposited on the catalyst. The obtained results showed that at the same catalytic temperature (900 °C), a Ni/Co bimetallic catalyst exhibited higher carbon yield than the individual monometallic catalysts due to a better cracking capability on carbon-hydrogen bonds. With the increase of temperature, the carbon yield of the Ni/Co bimetallic catalyst increased first and then decreased. At a temperature of 950 °C, the Ni/Co bimetallic catalyst achieved its largest carbon yield, which can reach 255 mg g–1plastic. The growth of CNCs followed a “particle-wire-tube” mechanism for all studied catalysts. This work finds the potential application of complex oxide composite material catalysts for the generation of CNCs in catalytic pyrolysis of wasted plastic

    A facile strategy for reclaiming discarded graphite and harnessing the rate capabilities of graphite anodes

    No full text
    Graphite negative electrodes are unbeaten hitherto in lithium-ion batteries (LiBs) due to their unique chemical and physical properties. Thus, the increasing scarcity of graphite resources makes smart recycling or repurposing of discarded graphite particularly imperative. However, the current recycling techniques still need to be improved upon with urgency. Herein a facile and efficient hydrometallurgical process is reported to effectively regenerate aged (39.5 %, 75 % state-of-health, SOH) scrapped graphite (SG) from end-of-life lithium-ion bat-teries. Ultimately, the first cycle reversible capacity of SG1 (SOH = 39.5 %) improved from 266 mAh/g to 337 & nbsp;mAh/g while 330 mAh/g (98 %) remain after 100 cycles at 0.5 C. The reversible capacity for the first cycle of SG2 (SOH = 75 %) boosted from 335 mAh/g to 366 mAh/g with the capacity retention of 99.3 % after 100 cycles at 0.5 C, which is comparable with the benchmark commercial graphite. The regenerated graphites RG1 and RG2 exhibit excellent output characteristics even increasing the rate up to 4 C. This is the best rate level reported in the literature to date. Finally, the diffusion coefficient of Li ions during deintercalation and intercalation in the regenerated graphites have been measured by galvanostatic intermittent titration technique (GITT), determining values 2 orders-of-magnitude higher than that of the spent counterparts. Taking advantage of the synergistic effect of acid leaching and heat treatment, this strategy provides a simple and up-scalable method to recycle graphitic anodes
    corecore