7,659 research outputs found
Electronic phase separation near the superconductor-insulator transition of Nd1+xBa2−xCu3O7−δ thin films studied by an electric-field-induced doping effect
We report a detailed study of the transport properties of Nd(1+x)Ba(2-x)Cu(3)O(7-delta) thin films with doping changed by field effect. The data cover the whole superconducting to insulating transition and show remarkable Similarities with the effect of chemical doping in high critical temperature superconductors. The results suggest that the add-on of carriers is accompanied by an electronic phase separation, independent on the details of the doping mechanism
First results from an aging test of a prototype RPC for the LHCb Muon System
Recent results of an aging test performed at the CERN Gamma Irradiation
Facility on a single--gap RPC prototype developed for the LHCb Muon System are
presented. The results are based on an accumulated charge of about 0.45
C/cm, corresponding to about 4 years of LHCb running at the highest
background rate. The performance of the chamber has been studied under several
photon flux values exploiting a muon beam. A degradation of the rate capability
above 1 kHz/cm is observed, which can be correlated to a sizeable increase
of resistivity of the chamber plates. An increase of the chamber dark current
is also observed. The chamber performance is found to fulfill the LHCb
operation requirements.Comment: 6 pages, 9 figures, presented at the International Workshop on Aging
Phenomena in Gaseous Detectors'', DESY-Hamburg (Germany), October 200
Preliminary results of an aging test of RPC chambers for the LHCb Muon System
The preliminary results of an aging test performed at the CERN Gamma
Irradiation Facility on a single--gap RPC prototype developed for the LHCb Muon
System are presented. The results are based on an accumulated charge density of
0.42 C/cm^2, corresponding to about 4 years of LHCb running at the highest
background rate. We observe a rise in the dark current and noise measured with
source off. The current drawn with source on steadily decreased, possibly
indicating an increase of resistivity of the chamber plates. The performance of
the chamber, studied with a muon beam under several photon flux values, is
found to still fulfill the LHCb operation requirements.Comment: 4 pages, 6 figures, presented at RPC2001, VIth Workshop on Resistive
Plate Chambers and Related Detectors, November 26-27 2001, Coimbra, Portuga
The Transmissibility of Highly Pathogenic Avian Influenza in Commercial Poultry in Industrialised Countries
BACKGROUND: With the increased occurrence of outbreaks of H5N1 worldwide there is concern that the virus could enter commercial poultry farms with severe economic consequences. METHODOLOGY/PRINCIPAL FINDINGS: We analyse data from four recent outbreaks of highly pathogenic avian influenza (HPAI) in commercial poultry to estimate the farm-to-farm reproductive number for HPAI. The reproductive number is a key measure of the transmissibility of HPAI at the farm level because it can be used to evaluate the effectiveness of the control measures. In these outbreaks the mean farm-to-farm reproductive number prior to controls ranged from 1.1 to 2.4, with the maximum farm-based reproductive number in the range 2.2 to 3.2. Enhanced bio-security, movement restrictions and prompt isolation of the infected farms in all four outbreaks substantially reduced the reproductive number, but it remained close to the threshold value 1 necessary to ensure the disease will be eradicated. CONCLUSIONS/SIGNIFICANCE: Our results show that depending on the particular situation in which an outbreak of avian influenza occurs, current controls might not be enough to eradicate the disease, and therefore a close monitoring of the outbreak is required. The method we used for estimating the reproductive number is straightforward to implement and can be used in real-time. It therefore can be a useful tool to inform policy decisions
Electric field effect and superconducting–insulating transition in ‘123’ cuprate superconductors
The physics of high critical temperature superconductors (HTS) remains a fascinating but undisclosed issue in condensed matter. One of the most interesting topics is the transition from the insulating phase of the parent compound, having long range antiferromagnetic order, to the superconducting phase. A method to investigate in detail the superconducting to insulating (SIT) transition in HTS is to control the doping of the CuO(2) planes in a fine way. Here, by using the electric field effect on thin Nd(1)Ba(2)Cu(3)O(7) films, we present a study of the HTS phase diagram close to the SIT with unprecedented detail. By virtue of these data, we will show that doping of holes in samples located at the boundary separating the superconducting and insulating regions produces changes in the transport characteristic consistent with an electronic phase separation scenario. Some consequences of these data are the failure of standard 2D quantum scaling theory and the possible coexistence of superconducting and weakly insulating phases in this region of the phase diagram. A continuous transition between the two competing phases as a function of doping place evident constraints on the mechanism of superconductivity
Peptide-chelating agent conjugate for selective targeting of somatostatin receptor type1: Synthesis and characterization
Previously reported results suggest that the analogue of the somatostatin des-AA 1,2,5[D-Trp 8,IAmp 9]-somatostatin (CH-275) peptide bearing chelating agents able to coordinate radioactive metals could be used for scintigraphic imaging of tumor lesions overexpressing sstr1. An efficient synthetic procedure for the preparation of the somatostatin analogue CH-275 and its conjugate DTPAGlu-Gly-CH-275, bearing the chelating agent DTPAGlu (DTPAGlu = N,N-bis[2-[bis(carboxy-ethyl)amino]ethyl]-L-glutamic acid) on the N-terminus, by solid-phase peptide synthesis and 9-flourenymethyoxycarbonyl (Fmoc) chemistry, is here reported. Rapid and efficient labeling of DTPAGlu-Gly-CH-275 was achieved by addition of IIIIn(III) to the compound. Typical yields were greater than 97% as determined by reversed phase high performance liquid chromatography (HPLC) at specific activities in the range 4-9 GBq/μmol (100-250 Ci/mmol). A preliminary biological assay of the binding ability of IIIIn-DTPAGlu-Gly-CH-275 indicates, however, that the labeled compound does not display any specific interaction with somatostatin sstrl receptors in the tested cell lines. To confirm this unexpected negative result, competition binding experiments were carried out, in which fixed tracer amounts of the 125!-labeled somatostatin-14 were incubated with the receptor-expressing cells in the presence of DTPAGlu-Gly-CH-275 or CH-275 at concentrations ranging from 10 -10 to 10 -3 M. While CH-275 shows a IC 50 of 80 nM similar to that already found in displacement experiments on CHO-Kl sstrl-transfected cells, DTPAGlu-Gly-CH-275 displays instead very low or negligible affinity towards this receptor. The NMR solution characterization indicates that the presence of DTPAGlu does not influence the conformational and chemical features of the peptide moiety, thus suggesting that the loss in binding activity should be due to steric hindrance of either the chelating agent DTPAGlu or its indium comple
Eumelanin Graphene-Like Integration: The Impact on Physical Properties and Electrical Conductivity
The recent development of eumelanin pigment-based blends integrating "classical" organic conducting materials is expanding the scope of eumelanin in bioelectronics. Beyond the achievement of high conductivity level, another major goal lays in the knowledge and feasible control of structure/properties relationship. We systematically investigated different hybrid materials prepared by in situ polymerization of the eumelanin precursor 5,6-dihydroxyindole (DHI) in presence of various amounts of graphene-like layers. Spectroscopic studies performed by solid state nuclear magnetic resonance (ss-NMR), x-ray photoemission, and absorption spectroscopies gave a strong indication of the direct impact that the integration of graphene-like layers into the nascent polymerized DHI-based eumelanin has on the structural organization of the pigment itself, while infrared, and photoemission spectroscopies indicated the occurrence of negligible changes as concerns the chemical units. A tighter packing of the constituent units could represent a strong factor responsible for the observed improved electrical conductivity of the hybrid materials, and could be possible exploited as a tool for electrical conductivity tuning
Performance of the LHCb muon system
The performance of the LHCb Muon system and its stability across the full
2010 data taking with LHC running at ps = 7 TeV energy is studied. The
optimization of the detector setting and the time calibration performed with
the first collisions delivered by LHC is described. Particle rates, measured
for the wide range of luminosities and beam operation conditions experienced
during the run, are compared with the values expected from simulation. The
space and time alignment of the detectors, chamber efficiency, time resolution
and cluster size are evaluated. The detector performance is found to be as
expected from specifications or better. Notably the overall efficiency is well
above the design requirementsComment: JINST_015P_1112 201
A versatile cryogenic system for liquid argon detectors
Detectors for direct dark matter search using noble gases in liquid phase as
detection medium need to be coupled to liquefaction, purification and
recirculation systems. A dedicated cryogenic system has been assembled and
operated at the INFN-Naples cryogenic laboratory with the aim to liquefy and
purify the argon used as active target in liquid argon detectors to study the
scintillation and ionization signals detected by large SiPMs arrays. The
cryogenic system is mainly composed of a double wall cryostat hosting the
detector, a purification stage to reduce the impurities below one part per
billion level, a condenser to liquefy the argon, a recirculation gas panel
connected to the cryostat equipped with a custom gas pump. The main features of
the cryogenic system are reported as well as the performances, long term
operations and stability in terms of the most relevant thermodynamic
parameters.Comment: Prepared for submission to JINST - LIDINE2022 September 21-23, 2022 -
University of Warsaw Librar
- …