52,699 research outputs found

    Habituation to pain : a motivational-ethological perspective

    Get PDF
    Habituation to pain is mainly studied using external pain stimuli in healthy volunteers, often to identify the underlying brain mechanisms, or to investigate problems in habituation in specific forms of pain (eg, migraine). Although these studies provide insight, they do not address one pertinent question: Why do we habituate to pain? Pain is a warning signal that urges us to react. Habituation to pain may thus be dysfunctional: It could make us unresponsive in situations where sensitivity and swift response to bodily damage are essential. Early theories of habituation were well aware of this argument. Sokolov argued that responding to pain should not decrease, but rather increase with repeated exposure, a phenomenon he called “sensitization.” His position makes intuitive sense: Why would individuals respond less to pain that inherently signals bodily harm? In this topical review, we address this question from a motivational ethological perspective. First, we describe some core characteristics of habituation. Second, we discuss theories that explain how and when habituation occurs. Third, we introduce a motivational-ethological perspective on habituation and explain why habituation occurs. Finally, we discuss how a focus on habituation to pain introduces important methodological, theoretical, and clinical implications, otherwise overlooked

    Group membership and staff turnover affect outcomes in group CBT for persistent pain

    Get PDF
    The effects of two contextual factors, group membership and staff turnover, on the outcome of group cognitive behavioral therapy (CBT) for persistent pain were investigated. The data came from end of treatment and one month follow-up assessments of 3050 individuals who attended an intensive group programme over sixteen years. Intraclass correlations (ICC) showed significant intragroup effects on self-efficacy (ICC = 0.16 at end of treatment; 0.12 at one month), catastrophizing (ICC = 0.06; 0.13) and distance walked (ICC = 0.20; 0.19). This underlines the importance of modelling group membership when analyzing data from group interventions. Linear regression showed that high periods of staff turnover were significantly related to poorer outcomes on self-efficacy and distance walked at end of treatment, with the effect on self-efficacy persisting to one month follow-up. Having demonstrated significant contextual effects in an existing data set, further research is needed to explore the mechanisms by which these effects operate

    Superfluid and Fermi liquid phases of Bose-Fermi mixtures in optical lattices

    Full text link
    We describe interacting mixtures of ultracold bosonic and fermionic atoms in harmonically confined optical lattices. For a suitable choice of parameters we study the emergence of superfluid and Fermi liquid (non-insulating) regions out of Bose-Mott and Fermi-band insulators, due to finite Boson and Fermion hopping. We obtain the shell structure for the system and show that angular momentum can be transferred to the non-insulating regions from Laguerre-Gaussian beams, which combined with Bragg spectroscopy can reveal all superfluid and Fermi liquid shells.Comment: 4 pages, 2 figure

    Emergency medical dispatch recognition, clinical intervention and outcome of patients in traumatic cardiac arrest from major trauma : an observational study

    Get PDF
    © Author(s) (or their employer(s)) 2018. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.OBJECTIVES: The aim of this study is to describe the demographics of reported traumatic cardiac arrest (TCA) victims, prehospital resuscitation and survival to hospital rate. SETTING: Helicopter Emergency Medical Service (HEMS) in south-east England, covering a resident population of 4.5 million and a transient population of up to 8 million people. PARTICIPANTS: Patients reported on the initial 999 call to be in suspected traumatic cardiac arrest between 1 July 2016 and 31 December 2016 within the trust's geographical region were identified. The inclusion criteria were all cases of reported TCA on receipt of the initial emergency call. Patients were subsequently excluded if a medical cause of cardiac arrest was suspected. OUTCOME MEASURES: Patient records were analysed for actual presence of cardiac arrest, prehospital resuscitation procedures undertaken and for survival to hospital rates. RESULTS: 112 patients were reported to be in TCA on receipt of the 999/112 call. 51 (46%) were found not to be in TCA on arrival of emergency medical services. Of the 'not in TCA cohort', 34 (67%) received at least one advanced prehospital medical intervention (defined as emergency anaesthesia, thoracostomy, blood product transfusion or resuscitative thoracotomy). Of the 61 patients in actual TCA, 10 (16%) achieved return-of-spontaneous circulation. In 45 (88%) patients, the HEMS team escorted the patient to hospital. CONCLUSION: A significant proportion of patients reported to be in TCA on receipt of the emergency call are not in actual cardiac arrest but are critically unwell requiring advanced prehospital medical intervention. Early activation of an enhanced care team to a reported TCA call allows appropriate advanced resuscitation. Further research is warranted to determine which interventions contribute to improved TCA survival.Peer reviewedFinal Published versio

    Superfluid and Mott Insulating shells of bosons in harmonically confined optical lattices

    Full text link
    Weakly interacting atomic or molecular bosons in quantum degenerate regime and trapped in harmonically confined optical lattices, exhibit a wedding cake structure consisting of insulating (Mott) shells. It is shown that superfluid regions emerge between Mott shells as a result of fluctuations due to finite hopping. It is found that the order parameter equation in the superfluid regions is not of the Gross-Pitaeviskii type except near the insulator to superfluid boundaries. The excitation spectra in the Mott and superfluid regions are obtained, and it is shown that the superfluid shells posses low energy sound modes with spatially dependent sound velocity described by a local index of refraction directly related to the local superfluid density. Lastly, the Berezinskii-Kosterlitz-Thouless transition and vortex-antivortex pairs are discussed in thin (wide) superfluid shells (rings) limited by three (two) dimensional Mott regions.Comment: 11 pages, 9 figures

    Dubious data and contamination of the research literature on pain

    Get PDF

    Literature reviews are not all the same

    Get PDF
    I was very interested in the discussion in the Editorial of the first 2017 issue of Torture Journal which referred to two similar literature reviews with opposite conclusions (Weiss et al., 2016; Patel, Williams, & Kellezi, 2016; Patel, Kellezi, & Williams, 2014) and would like to clarify and elaborate some of the differences, which I think are of relevance to the conclusions

    More pieces of the puzzle: Chemistry and substructures in the Galactic thick disk

    Get PDF
    We present a study of the chemical abundances of Solar neighbourhood stars associated to dynamical structures in the Milky Way's (thick) disk. These stars were identified as overdensity in the eccentricity range 0.3< ecc < 0.5 in the Copenhagen-Geneva Survey by Helmi et al. (2006). We find that the stars with these dynamical characteristics do not constitute a homogeneous population. A relatively sharp transition in dynamical and chemical properties appears to occur at a metallicity of [Fe/H] ~ -0.4. Stars with [Fe/H] > -0.4 have mostly lower eccentricities, smaller vertical velocity dispersions, are alpha-enhanced and define a rather narrow sequence in [alpha/Fe] vs [Fe/H], clearly distinct from that of the thin disk. Stars with [Fe/H] < -0.4 have a range of eccentricities, are hotter vertically, and depict a larger spread in [alpha/Fe]. We have also found tentative evidence of substructure possibly associated to the disruption of a metal-rich star cluster. The differences between these populations of stars is also present in e.g. [Zn/Fe], [Ni/Fe] and [SmII/Fe], suggesting a real physical distinction.Comment: Astrophysical Journal in press. 5 pages, 4 figure

    A Contracting, Turbulent, Starless Core in the Serpens Cluster

    Get PDF
    We present combined single-dish and interferometric CS(2--1) and N2H+(1--0) observations of a compact core in the NW region of the Serpens molecular cloud. The core is starless according to observations from optical to millimeter wavelengths and its lines have turbulent widths and ``infall asymmetry''. Line profile modeling indicates supersonic inward motions v_in>0.34 km/s over an extended region L>12000AU. The high infall speed and large extent exceeds the predictions of most thermal ambipolar diffusion models and points to a more dynamical process for core formation. A short (dynamic) timescale, ~1e5 yr=L/v_in, is also suggested by the low N2H+ abundance ~1e-10.Comment: 11 pages including 2 figures. Accepted for publication in the Astrophysical Journal Letter

    Learning Bodily and Temporal Attention in Protective Movement Behavior Detection

    Get PDF
    For people with chronic pain, the assessment of protective behavior during physical functioning is essential to understand their subjective pain-related experiences (e.g., fear and anxiety toward pain and injury) and how they deal with such experiences (avoidance or reliance on specific body joints), with the ultimate goal of guiding intervention. Advances in deep learning (DL) can enable the development of such intervention. Using the EmoPain MoCap dataset, we investigate how attention-based DL architectures can be used to improve the detection of protective behavior by capturing the most informative temporal and body configurational cues characterizing specific movements and the strategies used to perform them. We propose an end-to-end deep learning architecture named BodyAttentionNet (BANet). BANet is designed to learn temporal and bodily parts that are more informative to the detection of protective behavior. The approach addresses the variety of ways people execute a movement (including healthy people) independently of the type of movement analyzed. Through extensive comparison experiments with other state-of-the-art machine learning techniques used with motion capture data, we show statistically significant improvements achieved by using these attention mechanisms. In addition, the BANet architecture requires a much lower number of parameters than the state of the art for comparable if not higher performances.Comment: 7 pages, 3 figures, 2 tables, code available, accepted in ACII 201
    • …
    corecore