7,417 research outputs found

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table

    Influence of the gate leakage current on the stability of organic single-crystal field-effect transistors

    Full text link
    We investigate the effect of a small leakage current through the gate insulator on the stability of organic single-crystal field-effect transistors (FETs). We find that, irrespective of the specific organic molecule and dielectric used, leakage current flowing through the gate insulator results in an irreversible degradation of the single-crystal FET performance. This degradation occurs even when the leakage current is several orders of magnitude smaller than the source-drain current. The experimental data indicate that a stable operation requires the leakage current to be smaller than $10^{-9} \ \mathrm{A/cm}^2$. Our results also suggest that gate leakage currents may determine the lifetime of thin-film transistors used in applications.Comment: submitted to Appl. Phys. Let

    Quantum theory of massless (p,0)-forms

    Full text link
    We describe the quantum theory of massless (p,0)-forms that satisfy a suitable holomorphic generalization of the free Maxwell equations on Kaehler spaces. These equations arise by first-quantizing a spinning particle with a U(1)-extended local supersymmetry on the worldline. Dirac quantization of the spinning particle produces a physical Hilbert space made up of (p,0)-forms that satisfy holomorphic Maxwell equations coupled to the background Kaehler geometry, containing in particular a charge that measures the amount of coupling to the U(1) part of the U(d) holonomy group of the d-dimensional Kaehler space. The relevant differential operators appearing in these equations are a twisted exterior holomorphic derivative and its hermitian conjugate (twisted Dolbeault operators with charge q). The particle model is used to obtain a worldline representation of the one-loop effective action of the (p,0)-forms. This representation allows to compute the first few heat kernel coefficients contained in the local expansion of the effective action and to derive duality relations between (p,0) and (d-p-2,0)-forms that include a topological mismatch appearing at one-loop.Comment: 32 pages, 3 figure

    A multi-detector array for high energy nuclear e+e- pair spectrosocopy

    Full text link
    A multi-detector array has been constructed for the simultaneous measurement of energy- and angular correlation of electron-positron pairs produced in internal pair conversion (IPC) of nuclear transitions up to 18 MeV. The response functions of the individual detectors have been measured with mono-energetic beams of electrons. Experimental results obtained with 1.6 MeV protons on targets containing 11^{11}B and 19^{19}F show clear IPC over a wide angular range. A comparison with GEANT simulations demonstrates that angular correlations of e+ee^+e^- pairs of transitions in the energy range between 6 and 18 MeV can be determined with sufficient resolution and efficiency to search for deviations from IPC due to the creation and subsequent decay into e+ee^+e^- of a hypothetical short-lived neutral boson.Comment: 20 pages, 8 figure

    The Kazhdan-Lusztig conjecture for finite W-algebras

    Full text link
    We study the representation theory of finite W-algebras. After introducing parabolic subalgebras to describe the structure of W-algebras, we define the Verma modules and give a conjecture for the Kac determinant. This allows us to find the completely degenerate representations of the finite W-algebras. To extract the irreducible representations we analyse the structure of singular and subsingular vectors, and find that for W-algebras, in general the maximal submodule of a Verma module is not generated by singular vectors only. Surprisingly, the role of the (sub)singular vectors can be encapsulated in terms of a `dual' analogue of the Kazhdan-Lusztig theorem for simple Lie algebras. These involve dual relative Kazhdan-Lusztig polynomials. We support our conjectures with some examples, and briefly discuss applications and the generalisation to infinite W-algebras.Comment: 11 page

    e+ee^{+}e^{-} pairs from a nuclear transition signaling an elusive light neutral boson

    Full text link
    Electron-positron pairs have been observed in the 10.95-MeV 00+0^-\to0^+ decay in 16^{16}O. The branching ratio of the e+^+e^- pairs compared to the 3.84-MeV 02+0^-\to2^+ γ\gamma decay of the level is deduced to be 20(5)×10520(5)\times10^{-5}. This magnetic monopole (M0) transition cannot proceed by γ\gamma-ray decay and is, to first order, forbidden for internal pair creation. However, the transition may also proceed by the emission of a light neutral 00^{-} or 1+1^{+} boson. Indeed, we do observe a sharp peak in the e+ee^{+}e^{-} angular correlation with all the characteristics belonging to the intermediate emission of such a boson with an invariant mass of 8.5(5) MeV/c2^2. It may play a role in the current quest for light dark matter in the universe.Comment: 6 page

    G2 Hitchin functionals at one loop

    Full text link
    We consider the quantization of the effective target space description of topological M-theory in terms of the Hitchin functional whose critical points describe seven-manifolds with G2 structure. The one-loop partition function for this theory is calculated and an extended version of it, that is related to generalized G2 geometry, is compared with the topological G2 string. We relate the reduction of the effective action for the extended G2 theory to the Hitchin functional description of the topological string in six dimensions. The dependence of the partition functions on the choice of background G2 metric is also determined.Comment: 58 pages, LaTeX; v2: Acknowledgments adde

    The Asymptotic Giant Branches of GCs: Selective Entry Only

    Full text link
    The handful of available observations of AGB stars in Galactic Globular Clusters suggest that the GC AGB populations are dominated by cyanogen-weak stars. This contrasts strongly with the distributions in the RGB (and other) populations, which generally show a 50:50 bimodality in CN band strength. If it is true that the AGB populations show very different distributions then it presents a serious problem for low mass stellar evolution theory, since such a surface abundance change going from the RGB to AGB is not predicted by stellar models. However this is only a tentative conclusion, since it is based on very small AGB sample sizes. To test whether this problem really exists we have carried out an observational campaign specifically targeting AGB stars in GCs. We have obtained medium resolution spectra for about 250 AGB stars across 9 Galactic GCs using the multi-object spectrograph on the AAT (2df/AAOmega). We present some of the preliminary findings of the study for the second parameter trio of GCs: NGC 288, NGC 362 and NGC 1851. The results indeed show that there is a deficiency of stars with strong CN bands on the AGB. To confirm that this phenomenon is robust and not just confined to CN band strengths and their vagaries, we have made observations using FLAMES/VLT to measure elemental abundances for NGC 6752.We present some initial results from this study also. Our sodium abundance results show conclusively that only a subset of stars in GCs experience the AGB phase of evolution. This is the first direct, concrete confirmation of the phenomenon.Comment: 4 pages, to appear in conference proceedings of "Reading the book of globular clusters with the lens of stellar evolution", Rome, 26-28 November 201

    The Age Of Globular Clusters In Light Of Hipparcos: Resolving the Age Problem?

    Get PDF
    We review five independent techniques which are used to set the distance scale to globular clusters, including subdwarf main sequence fitting utilizing the recent Hipparcos parallax catalogue. These data together all indicate that globular clusters are farther away than previously believed, implying a reduction in age estimates. This new distance scale estimate is combined with a detailed numerical Monte Carlo study designed to assess the uncertainty associated with the theoretical age-turnoff luminosity relationship in order to estimate both the absolute age and uncertainty in age of the oldest globular clusters. Our best estimate for the mean age of the oldest globular clusters is now 11.5±1.311.5\pm 1.3 Gyr, with a one-sided, 95% confidence level lower limit of 9.5 Gyr. This represents a systematic shift of over 2 σ\sigma compared to our earlier estimate, due completely to the new distance scale---which we emphasize is not just due to the Hipparcos data. This now provides a lower limit on the age of the universe which is consistent with either an open universe, or a flat, matter dominated universe (the latter requiring H_0 \le 67 \kmsmpc). Our new study also explicitly quantifies how remaining uncertainties in the distance scale and stellar evolution models translate into uncertainties in the derived globular cluster ages. Simple formulae are provided which can be used to update our age estimate as improved determinations for various quantities become available.Comment: 41 pages, including 10 eps figs, uses aaspp4.sty and flushrt.sty, submitted to Ap.J., revised to incorporate FULL Hipparcos catalogue dat

    Far-Ultraviolet Color Gradients in Early-Type Galaxies

    Get PDF
    We discuss far-UV (1500 A) surface photometry and FUV-B color profiles for 8 E/S0 galaxies from images taken with the Ultraviolet Imaging Telescope, primarily during the Astro-2 mission. In three cases, the FUV radial profiles are more consistent with an exponential than a de Vaucouleurs function, but there is no other evidence for the presence of a disk or of young, massive stars. In all cases except M32 the FUV-B color becomes redder at larger radii. There is a wide range of internal radial FUV-B color gradients. However, we find no correlation between the FUV-B color gradients and internal metallicity gradients based on Mg absorption features. We conclude that metallicity is not the sole parameter controlling the "UV upturn component" in old populations.Comment: 11 pages; tar.gz file includes LaTeX text file, 3 PostScript figures. Paper to be published in ApJ Letter
    corecore