3,188 research outputs found

    The Structure and C=C Vibrational Frequencies of the all- trans Polyenes C2nH2n+2(n=2-15), C2nH2n(Me)2(n=2-13), and C2nH2n(tert-Butyl)2(n=2-5): Computational Results

    Get PDF
    Carbon-carbon bond lengths and C=C vibrational frequencies are reported for the linear, all-trans unsubstituted C2nH2n+2 (n=2-15), methyl capped C2nH2nMe2 (n=2-13), and tert-butyl capped C2nH2n(tert-butyl)2 (n=2-5) polyenes (C2h) calculated at the B3LYP/6-311++G(d,p) level. The C=C/C-C bond length alternation remains evident at this level for the unsubstituted and methyl capped polyenes as the chain length increases; the center-most difference in the length of the C-C/C=C bonds is ~0.06 Å for C30H32 and C26H26Me2. The Ag, in-phase, harmonic C=C Raman frequency for the unsubstituted polyenes decreases from 1699.2 cm-1 (n = 2) to 1528.9 cm-1 (n=15); the anharmonic frequency decreases from 1651.5 cm-1 (n = 2) to 1547.7 cm-1 (n = 8). The harmonic C=C frequency for the methyl capped polyenes decreases from 1717.9 cm-1 (n = 2) to 1539.6 cm- 1 (n= 13), and the anharmonic C=C frequency decreases from 1675.0 cm-1 (n = 2) to 1562.8 cm-1 (n = 7)

    A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields

    Get PDF
    The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a fundamental aspect of the Hubble galaxy classification system. This ``tuning fork'' view was revised by de Vaucouleurs, whose classification volume recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of galaxies called the ``family''. However, the SA, SAB, and SB families are purely visual judgments that can have little bearing on the actual bar strength in a given galaxy. Until very recently, published bar judgments were based exclusively on blue light images, where internal extinction or star formation can either mask a bar completely or give the false impression of a bar in a nonbarred galaxy. Near-infrared camera arrays, which principally trace the old stellar populations in both normal and barred galaxies, now facilitate a quantification of bar strength in terms of their gravitational potentials and force fields. In this paper, we show that the maximum value, Qb, of the ratio of the tangential force to the mean radial force is a quantitative measure of the strength of a bar. Qb does not measure bar ellipticity or bar shape, but rather depends on the actual forcing due to the bar embedded in its disk. We show that a wide range of true bar strengths characterizes the category ``SB'', while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30 pages + 3 figures); Figs. 1 and 3 are in color and are also available at http://bama.ua.edu/~rbuta/bars

    Analytic models and forward scattering from accelerator to cosmic-ray energies

    Full text link
    Analytic models for hadron-hadron scattering are characterized by analytical parametrizations for the forward amplitudes and the use of dispersion relation techniques to study the total cross section σtot\sigma_{tot} and the ρ\rho parameter. In this paper we investigate four aspects related to the application of the model to pppp and pˉp\bar{p}p scattering, from accelerator to cosmic-ray energies: 1) the effect of different estimations for σtot\sigma_{tot} from cosmic-ray experiments; 2) the differences between individual and global (simultaneous) fits to σtot\sigma_{tot} and ρ\rho; 3) the role of the subtraction constant in the dispersion relations; 4) the effect of distinct asymptotic inputs from different analytic models. This is done by using as a framework the single Pomeron and the maximal Odderon parametrizations for the total cross section. Our main conclusions are the following: 1) Despite the small influence from different cosmic-ray estimations, the results allow us to extract an upper bound for the soft pomeron intercept: 1+Ï”=1.0941 + \epsilon = 1.094; 2) although global fits present good statistical results, in general, this procedure constrains the rise of σtot\sigma_{tot}; 3) the subtraction constant as a free parameter affects the fit results at both low and high energies; 4) independently of the cosmic-ray information used and the subtraction constant, global fits with the odderon parametrization predict that, above s≈70\sqrt s \approx 70 GeV, ρpp(s)\rho_{pp}(s) becomes greater than ρpˉp(s)\rho_{\bar{p}p}(s), and this result is in complete agreement with all the data presently available. In particular, we infer ρpp=0.134±0.005\rho_{pp} = 0.134 \pm 0.005 at s=200\sqrt s = 200 GeV and 0.151±0.0070.151 \pm 0.007 at 500 GeV (BNL RHIC energies).Comment: 16 pages, 7 figures, aps-revtex, wording changes, corrected typos, to appear in Physical Review

    The Dwarf Galaxy Population of the Dorado group down to Mv=-11

    Get PDF
    We present V and I CCD photometry of suspected low-surface brightness dwarf galaxies detected in a survey covering ~2.4 deg^2 around the central region of the Dorado group of galaxies. The low-surface brightness galaxies were chosen based on their sizes and magnitudes at the limiting isophote of 26.0V\mu. The selected galaxies have magnitudes brighter than V=20 (Mv=-11 for an assumed distance to the group of 17.2 Mpc), with central surface brightnesses \mu0>22.5 V mag/arcsec^2, scale lengths h>2'', and diameters > 14'' at the limiting isophote. Using these criteria, we identified 69 dwarf galaxy candidates. Four of them are large very low-surface brightness galaxies that were detected on a smoothed image, after masking high surface brightness objects. Monte Carlo simulations performed to estimate completeness, photometric uncertainties and to evaluate our ability to detect extended low-surface brightness galaxies show that the completeness fraction is, on average, > 80% for dwarf galaxies with −17<MV<−10.5-17<M_{V}<-10.5 and 22.5<\mu0<25.5 V mag/arcsec^2, for the range of sizes considered by us (D>14''). The V-I colors of the dwarf candidates vary from -0.3 to 2.3 with a peak on V-I=0.98, suggesting a range of different stellar populations in these galaxies. The projected surface density of the dwarf galaxies shows a concentration towards the group center similar in extent to that found around five X-ray groups and the elliptical galaxy NGC1132 studied by Mulchaey and Zabludoff (1999), suggesting that the dwarf galaxies in Dorado are probably physically associated with the overall potential well of the group.Comment: 32 pages, 16 postscript figures and 3 figures in GIF format, aastex v5.0. To appear in The Astronomical Journal, January 200

    Radial HI Profiles at the Periphery of Galactic Disks: The Role of Ionizing Background Radiation

    Full text link
    Observations of neutral hydrogen in spiral galaxies reveal a sharp cutoff in the radial density profile at some distance from the center. Using 22 galaxies with known HI distributions as an example, we discuss the question of whether this effect can be associated exclusively with external ionizing radiation, as is commonly assumed. We show that before the surface density reaches σHI≀0.5M⊙/pc2\sigma_{\textrm{HI}}\le 0.5 {\cal M}_\odot/{\textrm {pc}}^2(the same for galaxies of different types), it is hard to expect the gas to be fully ionized by background radiation. For two of 13 galaxies with a sharp drop in the HI profile, the "steepening" can actually be caused by ionization. At the same time, for the remaining galaxies, the observed cutoff in the radial HI profile is closer to the center than if it was a consequence of ionization by background radiation and, therefore, it should be caused by other factors.Comment: 15 pages, 6 figure

    Visualizing individual microtubules using bright-field microscopy

    Full text link
    Microtubules are filament-shaped, polymeric proteins (~25 nm in diameter) involved in cellular structure and organization. We demonstrate the imaging of individual microtubules using a conventional bright-field microscope, without any additional phase or polarization optics. Light scattered by microtubules is discriminated through extensive use of digital image-processing, thus removing background, reducing noise and enhancing contrast. The setup builds on a commercial microscope, with the inclusion of a minimal and inexpensive set of components, suitable for implementation in the student laboratory. We show how this technique can be applied to a demonstrative biophysical assay, by tracking the motions of microtubules driven by the motor protein kinesin

    Semi-Analytical Models for Lensing by Dark Halos: I. Splitting Angles

    Get PDF
    We use the semi-analytical approach to analyze gravitational lensing of quasars by dark halos in various cold dark matter (CDM) cosmologies, in order to determine the sensitivity of the prediction probabilities of images separations to the input assumptions regarding halos and cosmologies. The mass function of dark halos is assumed to be given by the Press-Schechter function. The mass density profile of dark halos is alternatively taken to be the singular isothermal sphere (SIS), the Navarro-Frenk-White (NFW) profile, or the generalized NFW profile. The cosmologies include: the Einstein-de Sitter model (SCDM), the open model (OCDM), and the flat \Lambda-model (LCDM). As expected, we find that the lensing probability is extremely sensitive to the mass density profile of dark halos, and somewhat less so to the mean mass density in the universe, and the amplitude of primordial fluctuations. NFW halos are very much less effective in producing multiple images than SIS halos. However, none of these models can completely explain the current observations: the SIS models predict too many large splitting lenses, while the NFW models predict too few small splitting lenses. This indicates that there must be at least two populations of halos in the universe. A combination of SIS and NFW halos can reasonably reproduce the current observations if we choose the mass for the transition from SIS to NFW to be ~ 10^{13} solar masses. Additionally, there is a tendency for CDM models to have too much power on small scales, i.e. too much mass concentration; and it appears that the cures proposed for other apparent difficulties of CDM would help here as well, an example being the warm dark matter (WDM) variant which is shown to produce large splitting lenses fewer than the corresponding CDM model by one order of magnitude.Comment: 46 pages, including 13 figures. Revised version with significant improvemen

    Evolution and biogeography of the Pavetteae tribe

    Get PDF
    With over 700 species, the Pavetteae are one o f the largest tribes in the subfamily Dialypetalanthoideae (formerly: Ixoroideae). Pavetteae representatives are characterized by a high morphological variation, especially regarding the reproductive characters (e.g., number of seeds per fruit, seed type and placentation). Representatives of the tribe occur throughout the Paleotropics in humid and dry vegetation types. In the Asian-Pacific regiĂłn ca 300 species are currently described whereas on continental Africa and Madagascar (and Western Indian Ocean Islands) ca 350 and ca 80 species are present, respectively. Recently many new genera have been recognized among the Malagasy Pavetteae species (e.g. Tulearia). In addition, it is clear that within the paleotropical genus Tarenna there will be a split into different genera. Not only is the taxonomic history of the tribe rather complicated, also the biogeographical history and evolutionary patterns of the tribe remain understudied to date. Molecular phylogenetics combined with age inference methods, diversificaron analyses and ancestral area reconstruction clearly indicate that current diversity of the Pavetteae is the result of several dispersal events within the Paleotropical region. Moreover, several shifts in ecological preference have likely driven the evolutionary history within the Pavetteae

    The Relationship Between Stellar Light Distributions of Galaxies and their Formation Histories

    Full text link
    A major problem in extragalactic astronomy is the inability to distinguish in a robust, physical, and model independent way how galaxy populations are related to each other and to their formation histories. A similar, but distinct, and also long standing question is whether the structural appearances of galaxies, as seen through their stellar light distributions, contain enough physical information to offer this classification. We argue through the use of 240 images of nearby galaxies that three model independent parameters measured on a single galaxy image reveal its major ongoing and past formation modes, and can be used as a robust classification system. These parameters quantitatively measure: the concentration (C), asymmetry (A) and clumpiness (S) of a galaxy's stellar light distribution. When combined into a three dimensional `CAS' volume all major classes of galaxies in various phases of evolution are cleanly distinguished. We argue that these three parameters correlate with important modes of galaxy evolution: star formation and major merging activity. This is argued through the strong correlation of Halpha equivalent width and broad band colors with the clumpiness parameter, the uniquely large asymmetries of 66 galaxies undergoing mergers, and the correlation of bulge to total light ratios, and stellar masses, with the concentration index. As an obvious goal is to use this system at high redshifts to trace evolution, we demonstrate that these parameters can be measured, within a reasonable and quantifiable uncertainty, with available data out to z ~ 3 using the Hubble Space Telescope GOODS ACS and Hubble Deep Field images.Comment: ApJS, in press, 30 pages, Figures 15 and 16 are in color. For a full resolution version, please go to http://www.astro.caltech.edu/~cc/cas.p

    Gas flow and dark matter in the inner parts of early-type barred galaxies

    Full text link
    This paper presents the dynamical simulations run in the potential derived from the light distribution of 5 late-type barred spiral galaxies. The aim is to determine whether the mass distribution together with the hydrodynamical simulations can reproduce the observed line-of-sight velocity curves and the gas morphology in the inner regions of the sample barred galaxies. The light distribution is obtained from the HH-band and the II-band combined together. The M/L is determined using population synthesis models. The observations and the methodology of the mass distribution modelling are presented in a companion paper. The SPH models using the stellar mass models obtained directly from the HH-band light distributions give a good representation of the gas distribution and dynamics of the modelled galaxies, supporting the maximum disk assumption. This result indicates that the gravitational field in the inner region is mostly provided by the stellar luminous component. When 40% of the total mass is transferred to an axisymmetric dark halo, the modelled kinematics clearly depart from the observed kinematics, whereas the departures are negligible for dark mass halos of 5% and 20% of the total mass. This result sets a lower limit for the contribution of the luminous component of about 80%, which is in agreement with the maximum disk definition of the stellar mass contribution to the rotation curve (about 85%±\pm10).Comment: 28 pages, 30 figures. Accepted for publication in A&A on 17/05/2004. High resolution figures on publicatio
    • 

    corecore