133 research outputs found

    The Tumor Necrosis Factor Superfamily of Cytokines in the Inflammatory Myopathies: Potential Targets for Therapy

    Get PDF
    The idiopathic inflammatory myopathies (IM) represent a heterogeneous group of autoimmune diseases, of which dermatomyositis (DM), polymyositis (PM), and sporadic inclusion body myositis (IBM) are the most common. The crucial role played by tumor necrosis factor alpha (TNFα) in the IM has long been recognized. However, so far, 18 other members of the TNF superfamily have been characterized, and many of these have not yet received the attention they deserve. In this paper, we summarize current findings for all TNF cytokines in IM, pinpointing what we know already and where current knowledge fails. For each TNF family member, possibilities for treating inflammatory diseases in general and the IM in particular are explored

    Multisystem proteinopathy due to a homozygous p.Arg159His VCP mutation : a tale of the unexpected

    Get PDF
    ObjectiveTo assess the clinical, radiologic, myopathologic, and proteomic findings in a patient manifesting a multisystem proteinopathy due to a homozygous valosin-containing protein gene (VCP) mutation previously reported to be pathogenic in the heterozygous state.MethodsWe studied a 36-year-old male index patient and his father, both presenting with progressive limb-girdle weakness. Muscle involvement was assessed by MRI and muscle biopsies. We performed whole-exome sequencing and Sanger sequencing for segregation analysis of the identified p.Arg159His VCP mutation. To dissect biological disease signatures, we applied state-of-the-art quantitative proteomics on muscle tissue of the index case, his father, 3 additional patients with VCP-related myopathy, and 3 control individuals.ResultsThe index patient, homozygous for the known p.Arg159His mutation in VCP, manifested a typical VCP-related myopathy phenotype, although with a markedly high creatine kinase value and a relatively early disease onset, and Paget disease of bone. The father exhibited a myopathy phenotype and discrete parkinsonism, and multiple deceased family members on the maternal side of the pedigree displayed a dementia, parkinsonism, or myopathy phenotype. Bioinformatic analysis of quantitative proteomic data revealed the degenerative nature of the disease, with evidence suggesting selective failure of muscle regeneration and stress granule dyshomeostasis.ConclusionWe report a patient showing a multisystem proteinopathy due to a homozygous VCP mutation. The patient manifests a severe phenotype, yet fundamental disease characteristics are preserved. Proteomic findings provide further insights into VCP-related pathomechanisms

    Analytical calculation of fracture toughness of materials on tests of small-sized samples with a chevron notch

    Get PDF
    On the example of technical titanium VT1-0, a new technique for determining the crack resistance of materials is described in the data of tests of small-sized samples with a chevron notch. The problem of displacement the points of application of the part load due to the variation in the compliance of the sample during the propagation of a crack is solved. Equations for the calculation of the specific fracture energy from the experimental data of small-sized samples with a chevron notch are obtained

    Induction of Osmolyte Pathways in Skeletal Muscle Inflammation: Novel Biomarkers for Myositis

    Get PDF
    We recently identified osmolyte accumulators as novel biomarkers for chronic skeletal muscle inflammation and weakness, but their precise involvement in inflammatory myopathies remains elusive. In the current study, we demonstrate in vitro that, in myoblasts and myotubes exposed to pro-inflammatory cytokines or increased salt concentration, mRNA levels of the osmolyte carriers SLC5A3, SLC6A6, SLC6A12, and AKR1B1 enzyme can be upregulated. Induction of SLC6A12 and AKR1B1 was confirmed at the protein level using immunofluorescence and Western blotting. Gene silencing by specific siRNAs revealed that these factors were vital for muscle cells under hyperosmotic conditions. Pro-inflammatory cytokines activated mitogen-activated protein kinases, nuclear factor κB as well as nuclear factor of activated T-cells 5 mRNA expression. In muscle biopsies from patients with polymyositis or sporadic inclusion body myositis, osmolyte pathway activation was observed in regenerating muscle fibers. In addition, the osmolyte carriers SLC5A3 and SLC6A12 localized to subsets of immune cells, most notably to the endomysial macrophages and T-cells. Collectively, this study unveiled that muscle cells respond to osmotic and inflammatory stress by osmolyte pathway activation, likely orchestrating general protection of the tissue. Moreover, pro-inflammatory properties are attributed to SLC5A3 and SLC6A12 in auto-aggressive macrophages and T-cells in inflamed skeletal muscle

    Efficacy and safety of rozanolixizumab in moderate to severe generalized myasthenia gravis : a phase 2 randomized control trial

    Get PDF
    OBJECTIVE: To explore the clinical efficacy and safety of subcutaneous (SC) rozanolixizumab, an anti-neonatal Fc receptor humanized monoclonal antibody, in patients with generalized myasthenia gravis (gMG). METHODS: In this phase 2a, randomized, double-blind, placebo-controlled, 2-period, multicenter trial (NCT03052751), patients were randomized (1:1) in period 1 (days 1-29) to 3 once-weekly (Q1W) SC infusions of rozanolixizumab 7 mg/kg or placebo. In period 2 (days 29-43), patients were re-randomized to either rozanolixizumab 7 mg/kg or 4 mg/kg (3 Q1W SC infusions), followed by an observation period (days 44-99). Primary endpoint was change from baseline to day 29 in Quantitative Myasthenia Gravis (QMG) score. Secondary endpoints were change from baseline to day 29 in MG-Activities of Daily Living (MG-ADL) and MG-Composite (MGC) scores and safety. RESULTS: Forty-three patients were randomized (rozanolixizumab 21, placebo 22 [period 1]). Least squares (LS) mean change from baseline to day 29 for rozanolixizumab vs placebo was as follows: QMG (LS mean -1.8 vs -1.2, difference -0.7, 95% upper confidence limit [UCL] 0.8; p = 0.221; not statistically significant), MG-ADL (LS mean -1.8 vs -0.4, difference -1.4, 95% UCL -0.4), and MGC (LS mean -3.1 vs -1.2, difference -1.8, 95% UCL 0.4) scores. Efficacy measures continued to improve with rozanolixizumab 7 mg/kg in period 2. The most common adverse event in period 1 was headache (rozanolixizumab 57%, placebo 14%). CONCLUSION: Whereas change from baseline in QMG was not statistically significant, the data overall suggest rozanolixizumab may provide clinical benefit in patients with gMG and was generally well tolerated. Phase 3 evaluation is ongoing (NCT03971422). CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for patients with gMG, rozanolixizumab is well-tolerated, but did not significantly improve QMG score

    Localization and expression of nuclear factor of activated T-cells 5 in myoblasts exposed to pro-inflammatory cytokines or hyperosmolar stress and in biopsies from myositis patients

    Get PDF
    Aims: Regeneration in skeletal muscle relies on regulated myoblast migration and differentiation, in which the transcription factor nuclear factor of activated T-cells 5 (NFAT5) participates. Impaired muscle regeneration and chronic inflammation are prevalent in myositis. Little is known about the impact of inflammation on NFAT5 localization and expression in this group of diseases. The goal of this study was to investigate NFAT5 physiology in unaffected myoblasts exposed to cytokine or hyperosmolar stress and in myositis. Methods: NFAT5 intracellular localization and expression were studied in vitro using a cell culture model of myositis. Myoblasts were exposed to DMEM solutions enriched with pro-inflammatory cytokines IFN-gamma with IL-1 beta) or hyperosmolar DMEM obtained by NaCI supplementation. NFAT5 localization was visualized using immunohistochemistry (IHC) and Western blotting (WB) in fractionated cell lysates. NFAT5 expression was assessed by WB and RT-qPCR. In vivo localization and expression of NFAT5 were studied in muscle biopsies of patients diagnosed with polymyositis (n = 6), dermatomyositis (n = 10), inclusion body myositis (n = 11) and were compared to NFAT5 localization and expression in non-myopathic controls (n = 13). Muscle biopsies were studied by means of quantitative IHC and WB of total protein extracts. Results: In unaffected myoblasts, hyperosmolar stress ensues in NFAT5 nuclear translocation and increased NFAT5 mRNA and protein expression. In contrast, pro-inflammatory cytokines did not lead to NFAT5 nuclear translocation nor increased expression. Cytokines IL-1 beta with IFN-gamma induced colocalization of NFAT5 with histone deacetylase 6 (HDAC6), involved in cell motility. In muscle biopsies from dermatomyositis and polymyositis patients, NFAT5 colocalized with HDAC6, while in IBM, this was often absent. Conclusions: Our data suggest impaired NFAT5 localization and expression in unaffected myoblasts in response to inflammation. This disturbed myogenic NFAT5 physiology could possibly explain deleterious effects on muscle regeneration in myositis

    Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients

    Get PDF
    Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 mu g/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 mu g/l, P = 0.0004; itself higher than the normal level (3.4 mu g/l, range from 0.5 to 17.2 mu g/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level >= 7 mu g/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia ataxic patient to be affected with AOA2 with AFP levels >= 7 mu g/l is 46%. Therefore, selection of patients with an AFP level above 7 mu g/l for senataxin gene sequencing is a good strategy for AOA2 diagnosis. Pyramidal signs and dystonia were more frequent and disease was less severe with missense mutations in the helicase domain of senataxin gene than with missense mutations out of helicase domain and deletion and nonsense mutations (P = 0.001, P = 0.008 and P = 0.01, respectively). The lack of pyramidal signs in most patients may be explained by masking due to severe motor neuropathy
    corecore