412 research outputs found

    Endocytosis of glycosylphosphatidylinositol-anchored proteins

    Get PDF
    Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies

    Antimicrobial sensitivity pattern from clinical isolates at a tertiary care teaching hospital of rural Bengal: a pilot study

    Get PDF
    Background: Antimicrobial sensitivity pattern from clinical isolates can reveal important information that can help in drafting the hospital antibiotic policy as well as help improve prescribing patterns and patient outcome in a particular region.Methods: Data from the results of the antimicrobial sensitivity pattern of clinical isolates of the patients between 1stJuly and 31st December 2018 were collected on a pre-designed and pre tested case study form and analysed with the help of descriptive statistics.Results: A total of 75 blood culture reports were obtained which showed 58 gram positive cultures. Further 46 of the gram positive samples were positive for Coagulase negative Staphylococcus. A total of 305 urine samples were obtained for culture which showed gram negative cultures. Paediatric and medicine wards were the common yielding sites. A total of 242 pus reports were obtained which showed 47 gram positive cultures. A total of 154 wound swab samples were obtained which showed 47 gram positive cultures. For pus and wound swab samples, surgery wards were the common yielding sites. Common gram negative organisms seen were Klebsiella sp., E. coli, Citrobacter sp., Pseudomonas, Proteus and Enterobacter. Gram positive organisms were commonly resistant to Erythromycin, orally active Penicillins, Vancomycin and Teicoplanin and gram negative organisms were commonly resistant to Cephalosporins, Aminoglycosides, Colistin, Fluroquinolones and Meropenem.Conclusions: This study showed that over six months samples of body pus, wound swab, blood culture and urine showed high levels of resistance to commonly used antibiotics. This would provide an outline for development of an effective hospital Infection Control Policy

    Microservices Architectures and Technical Debt: A Self-adaptation View

    Get PDF
    In this paper, we discuss the impact that technical debt (TD) may have on MSA regarding some quality attributes, like security, and hypothesise how self-adaptation could be useful in dealing with some aspects of TD

    Synthesis, Characterization, Electrochemistry, Photoluminescence and Magnetic Properties of a Dinuclear Erbium(III)-Containing Monolacunary Dawson-Type Tungstophosphate: [{Er(H2O)(CH3COO)(P2W17O61)}2]16−

    Get PDF
    Reaction of the trilacunary Wells−Dawson anion {α-P2_{2}W15_{15}O56_{56}12−^{12-} with ErIII ion in a 1 M LiOAc/HOAc buffer (pH 4.8) solution produces a dinuclear erbium(III) substituted sandwich-type structure [{Er(H2_{2}O)(CH3_{3}COO)(P2_{2}W17_{17}O61_{61})}2_{2}]16−^{16-} (1). The isolated compound was structurally characterized using single crystal and powder X-ray diffraction, FTIR spectroscopy, mass spectrometry and thermogravimetric analysis. The electrochemical, electrocatalytic, photoluminescence and magnetic properties of 1 were investigated

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table

    Reduced Angiopoietin-Like 4 Expression in Multiple Sclerosis Lesions Facilitates Lipid Uptake by Phagocytes via Modulation of Lipoprotein-Lipase Activity

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS) characterized by the presence of focal demyelinated plaques. Sufficient clearance of myelin and cellular debris is one of the requirements for proper tissue repair and remyelination. The mechanisms underlying the clearance of such debris by phagocytes are not fully understood, but recent findings suggest a prominent role for lipoprotein-lipase (LPL) in this process. Here, we demonstrate that angiopoietin-like 4 (ANGPTL4), a potent inhibitor of LPL, is abundantly expressed in astrocytes in control white matter tissue and its expression is markedly reduced in active MS lesions. We provide evidence that ANGPTL4 inhibits the uptake of myelin-derived lipids by LPL-immunoreactive phagocytes. Taken together, our data suggest that the strong reduction in astrocytic ANGPTL4 expression in active demyelinating MS lesions enables phagocytes to adequately clear myelin debris, setting the stage for remyelination

    Heterogeneous RNA editing and influence of ADAR2 on mesothelioma chemoresistance and the tumor microenvironment

    Full text link
    We previously observed increased levels of adenosine-deaminase-acting-on-dsRNA (Adar)-dependent RNA editing during mesothelioma development in mice exposed to asbestos. The aim of this study was to characterize and assess the role of ADAR-dependent RNA editing in mesothelioma. We found that tumors and mesothelioma primary cultures have higher ADAR-mediated RNA editing compared to mesothelial cells. Unsupervised clustering of editing in different genomic regions revealed heterogeneity between tumor samples as well as mesothelioma primary cultures. ADAR2 expression levels are higher in BRCA1-associated protein 1 wild-type tumors, with corresponding changes in RNA editing in transcripts and 3'UTR. ADAR2 knockdown and rescue models indicated a role in cell proliferation, altered cell cycle, increased sensitivity to antifolate treatment, and type-1 interferon signaling upregulation, leading to changes in the microenvironment in vivo. Our data indicate that RNA editing contributes to mesothelioma heterogeneity and highlights an important role of ADAR2 not only in growth regulation in mesothelioma but also in chemotherapy response, in addition to regulating inflammatory response downstream of sensing nucleic acid structures

    Safety and Tolerability of SER-109 as an Investigational Microbiome Therapeutic in Adults With Recurrent Clostridioides difficile Infection: A Phase 3, Open-Label, Single-Arm Trial

    Get PDF
    IMPORTANCE: A safe and effective treatment for recurrent Clostridioides difficile infection (CDI) is urgently needed. Antibiotics kill toxin-producing bacteria but do not repair the disrupted microbiome, which promotes spore germination and infection recurrence. OBJECTIVES: To evaluate the safety and rate of CDI recurrence after administration of investigational microbiome therapeutic SER-109 through 24 weeks. DESIGN, SETTING, AND PARTICIPANTS: This phase 3, single-arm, open-label trial (ECOSPOR IV) was conducted at 72 US and Canadian outpatient sites from October 2017 to April 2022. Adults aged 18 years or older with recurrent CDI were enrolled in 2 cohorts: (1) rollover patients from the ECOSPOR III trial who had CDI recurrence diagnosed by toxin enzyme immunoassay (EIA) and (2) patients with at least 1 CDI recurrence (diagnosed by polymerase chain reaction [PCR] or toxin EIA), inclusive of their acute infection at study entry. INTERVENTIONS: SER-109 given orally as 4 capsules daily for 3 days following symptom resolution after antibiotic treatment for CDI. MAIN OUTCOMES AND MEASURES: The main outcomes were safety, measured as the rate of treatment-emergent adverse events (TEAEs) in all patients receiving any amount of SER-109, and cumulative rates of recurrent CDI (toxin-positive diarrhea requiring treatment) through week 24 in the intent-to-treat population. RESULTS: Of 351 patients screened, 263 were enrolled (180 [68.4%] female; mean [SD] age, 64.0 [15.7] years); 29 were in cohort 1 and 234 in cohort 2. Seventy-seven patients (29.3%) were enrolled with their first CDI recurrence. Overall, 141 patients (53.6%) had TEAEs, which were mostly mild to moderate and gastrointestinal. There were 8 deaths (3.0%) and 33 patients (12.5%) with serious TEAEs; none were considered treatment related by the investigators. Overall, 23 patients (8.7%; 95% CI, 5.6%-12.8%) had recurrent CDI at week 8 (4 of 29 [13.8%; 95% CI, 3.9%-31.7%] in cohort 1 and 19 of 234 [8.1%; 95% CI, 5.0%-12.4%] in cohort 2), and recurrent CDI rates remained low through 24 weeks (36 patients [13.7%; 95% CI, 9.8%-18.4%]). At week 8, recurrent CDI rates in patients with a first recurrence were similarly low (5 of 77 [6.5%; 95% CI, 2.1%-14.5%]) as in patients with 2 or more recurrences (18 of 186 [9.7%; 95% CI, 5.8%-14.9%]). Analyses by select baseline characteristics showed consistently low recurrent CDI rates in patients younger than 65 years vs 65 years or older (5 of 126 [4.0%; 95% CI, 1.3%-9.0%] vs 18 of 137 [13.1%; 95% CI, 8.0%-20.0%]) and patients enrolled based on positive PCR results (3 of 69 [4.3%; 95% CI, 0.9%-12.2%]) vs those with positive toxin EIA results (20 of 192 [10.4%; 95% CI, 6.5%-15.6%]). CONCLUSIONS AND RELEVANCE: In this trial, oral SER-109 was well tolerated in a patient population with recurrent CDI and prevalent comorbidities. The rate of recurrent CDI was low regardless of the number of prior recurrences, demographics, or diagnostic approach, supporting the beneficial impact of SER-109 for patients with CDI. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03183141
    • 

    corecore