13 research outputs found
Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides
The crucial function of macrophages in a variety of biological processes and pathologies render these cells important targets for gene therapeutic interventions. Commonly used synthetic gene delivery vectors have not been successful in transfecting these non-dividing cells. A combination strategy involving cationic liposomes to condense and carry DNA, transferrin to facilitate cellular uptake, and the pH-sensitive peptide GALA to promote endosome destabilization, resulted in significant expression of a luciferase gene. Transfection of macrophages was dependent on the degree of differentiation of the cells. The quaternary complexes of cationic liposomes, DNA, transferrin, and GALA exhibited a net negative charge, which may obviate a limitation of cationic synthetic vectors in vivo. The lack of cytotoxicity and the expected back of immunogenicity of these complexes may render them useful for gene delivery to macrophages in vivo
Characterization and functionality of proliferative human sertoli cells
It has long been thought that mammalian Sertoli cells are terminally differentiated and nondividing postpuberty. For most previous in vitro studies immature rodent testes have been the source of Sertoli cells and these have shown little proliferative ability when cultured. We have isolated and characterized Sertoli cells from human cadaveric testes from seven donors ranging from 12 to 36 years of age. The cells proliferated readily in vitro under the optimized conditions used with a doubling time of approximately 4 days. Nuclear 5-ethynyl-2´-deoxyuridine (EdU) incorporation confirmed that dividing cells represented the majority of the population. Classical Sertoli cell ultrastructural features, lipid droplet accumulation, and immunoexpression of GATA-4, Sox9, and the FSH receptor (FSHr) were observed by electron and fluorescence microscopy, respectively. Flow cytometry revealed the expression of GATA-4 and Sox9 by more than 99% of the cells, and abundant expression of a number of markers indicative of multipotent mesenchymal cells. Low detection of endogenous alkaline phosphatase activity after passaging showed that few peritubular myoid cells were present. GATA-4 and SOX9 expression were confirmed by reverse transcription polymerase chain reaction (RT-PCR), along with expression of stem cell factor (SCF), glial cell line-derived neurotrophic factor (GDNF), and bone morphogenic protein 4 (BMP4). Tight junctions were formed by Sertoli cells plated on transwell inserts coated with fibronectin as revealed by increased transepithelial electrical resistance (TER) and polarized secretion of the immunoregulatory protein, galectin-1. These primary Sertoli cell populations could be expanded dramatically in vitro and could be cryopreserved. The results show that functional human Sertoli cells can be propagated in vitro from testicular cells isolated from adult testis. The proliferative human Sertoli cells should have important applications in studying infertility, reproductive toxicology, testicular cancer, and spermatogenesis, and due to their unique biological properties potentially could be useful in cell therapy.Fil: Chui, Kitty. MandalMed Inc. ; Estados UnidosFil: Trivedi, Alpa. MandalMed Inc.; Estados Unidos. University of California; Estados UnidosFil: Cheng, C. Yan. Lonza Walkersville; Estados UnidosFil: Cherbavaz, Diana B.. MandalMed Inc.; Estados UnidosFil: Dazin, Paul F.. MandalMed; Estados UnidosFil: Huynh, Ai Lam Thu. MandalMed Inc.; Estados UnidosFil: Mitchel, James B.. Lonza Walkersville; Estados UnidosFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Noble Haeusslein, Linda J.. University of California; Estados UnidosFil: John, Constance M.. MandalMed Inc.; Estados Unido
Recommended from our members
Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and integrin alphav mediate survival signals through focal adhesion kinase.
Resistance to anoikis, or apoptosis triggered by detachment from the extracellular matrix (ECM), lengthens the survival of malignant cells, facilitating reattachment and colonization of secondary sites. To examine the molecular mechanisms underlying resistance to anoikis in human oral squamous cell carcinoma (SCC) cells, we cultured human squamous carcinoma (HSC-3) cells in suspension on plates coated with poly-2-hydroxyethyl methacrylate, which blocks access to the ECM. Cells in suspension that formed multicellular aggregates had significantly lower levels of apoptosis than single cells. Aggregates, but not single cells, had high levels of fibronectin. Preincubation with a cyclic arginine-glycine-aspartic acid peptide or fibronectin-blocking antibody significantly increased anoikis. Single cells had markedly lower expression of the integrin alpha(v) receptor than aggregates. Blocking alpha(v) function with a blocking antibody or by transfection with an antisense oligonucleotide increased apoptosis and inhibited aggregation. In single cells but not aggregates, phosphorylation of the integrin-associated focal adhesion kinase (FAK) at tyrosine 397 was reduced, and p53 levels were increased. Apoptosis was increased by blocking FAK with an antisense oligonucleotide and reduced by blocking p53. These findings show that SCC cells escape suspension-induced anoikis by forming multicellular aggregates that avail themselves of fibronectin survival signals mediated by integrin alpha(v). Single cells in suspension that do not form aggregates undergo anoikis because of decreased FAK phosphorylation and increased p53 levels. Thus, SCC cells appear to use neighboring cells and the ECM molecule FN to promote the metastatic phenotype
Targeting of liposomes to HIV-1-infected cells by peptides derived from the CD4 receptor
Liposomes can be targeted to HIV-infected cells by either reconstituting transmembrane CD4 in the membrane or covalently coupling soluble CD4 to modified lipids. We investigated whether synthetic peptides could be used as ligands for targeting liposomes. A synthetic peptide from the complementarity determining region 2 (CDR-2)-like domain of CD4 could bind specifically to HIV-infected cells and mediate the binding of peptide-coupled liposomes to these cells. A peptide from the CDR-3-like domain of CD4 inhibited HIV-induced syncytia formation, but failed to target liposomes to infected cells. This apparent discrepancy may be due to the requirement for a conformational change in the CD4 receptor for the CDR-3 region to interact with the HIV envelope protein. Our results demonstrate the feasibility of using synthetic peptides to target liposomes containing antiviral drugs to HIV-infected cells
Liposome targeting to human immunodeficiency virus type 1-infected cells via recombinant soluble CD4 and CD4 immunoadhesin (CD4-IgG)
HIV-infected cells producing virions express the viral envelope glycoprotein gp120/gp41 on their surface. We examined whether liposomes coupled to recombinant soluble CD4 (sCD4, the ectodomain of CD4 which binds gp120 with high affinity) could specifically bind to HIV-infected cells. sCD4 was chemically coupled by 2 different methods to liposomes containing rhodamine-phosphatidylethanolamine in their membrane as a fluorescent marker. In one method, sCD4 was thiolated with N-succinimidyl acetylthioacetate (SATA) and coupled to liposomes via a malcimide-derivatised phospholipid. In the other method, the oligosaccharides on sCD4 were coupled to a. sulfhydryl-derivatised phospholipid, utilizing the bifunctional reagent, 4-(4-N-maleimidophenyl)butyric acid hydrazide (MPBH). The association of the liposomes with HIV-1-infected or uninfected cells was examined by flow cytometry. CD4-coupled liposomes associated specifically to chronically infected H9/HTLV-IIIB cells, but not to uninfected H9 cells. CD4-coupled liposomes also associated specifically with monocytic THP-1 cells chronically infected with HIV-1 (THP-1/HIV-1IIIB). Control liposomes without coupled CD4 did not associate significantly with any of the cells, while free sCD4 could competitively inhibit the association of the CD4-coupled liposomes with the infected cells. The chimeric molecule CD4-immunoadhesin (CD4-IgG) could also be used as a ligand to target liposomes with covalently coupled Protein A (which binds the Fc region of the CD4-IgG) to H9/HTLV-IIIB cells. The CD4-liposomes inhibited the infectivity of HIV-1 in A3.01 cells, and also bound rgp120. Our results suggest that liposomes containing antiviral or cytotoxic agents may be targeted specifically to HIV-infected cells. © 1994
Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides
The crucial function of macrophages in a variety of biological processes and pathologies render these cells important targets for gene therapeutic interventions. Commonly used synthetic gene delivery vectors have not been successful in transfecting these non-dividing cells. A combination strategy involving cationic liposomes to condense and carry DNA, transferrin to facilitate cellular uptake, and the pH-sensitive peptide GALA to promote endosome destabilization, resulted in significant expression of a luciferase gene. Transfection of macrophages was dependent on the degree of differentiation of the cells. The quaternary complexes of cationic liposomes, DNA, transferrin, and GALA exhibited a net negative charge, which may obviate a limitation of cationic synthetic vectors in vivo. The lack of cytotoxicity and the expected back of immunogenicity of these complexes may render them useful for gene delivery to macrophages in vivo
Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations.
Heterozygous mutations in the coding region of the serpentine Melanocortin 4 receptor are the most common genetic cause of human obesity described to date. There are still conflicting data regarding the overall prevalence of such mutations in obesity and limited information is available on the functional defects caused by most obesity-associated MC4R mutations. We report here the screening for mutations in the coding region of the MC4R of a new cohort of 172 patients presenting with severe childhood obesity and a family history of obesity. Three heterozygous MC4R mutations (Ser127Leu, Ala244Glu and Pro299His) were found in three patients of this cohort (1.74%), confirming that such mutations are implicated in a significant number of childhood obesity cases. A functional analysis of these mutant receptors, in addition to 11 other childhood obesity-associated MC4R mutations, indicates that they all alter the activation of the receptor by the endogenous agonist alpha-MSH. To further examine the functional defects caused by childhood obesity-associated MC4R mutations, we developed a novel, sensitive technique to quantitatively analyze the effect of a mutation on MC4R cell surface expression. Using this method we analyzed the cell surface expression of all the 14 described childhood obesity-associated MC4R missense mutations. We demonstrate that 81.3% of childhood obesity-associated heterozygous MC4R mutations lead to intracellular retention of the receptor. This result has implications for the potential pharmacologic rescue of childhood obesity-associated MC4R mutations and for the treatment of patients presenting with this condition
Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells
To improve the accuracy of predicting membrane protein sorting signals, we developed a general methodology for defining trafficking signal consensus sequences in the environment of the living cell. Our approach uses retroviral gene transfer to create combinatorial expression libraries of trafficking signal variants in mammalian cells, flow cytometry to sort cells based on trafficking phenotype, and quantitative trafficking assays to measure the efficacy of individual signals. Using this strategy to analyze arginine- and lysine-based endoplasmic reticulum localization signals, we demonstrate that small changes in the local sequence context dramatically alter signal strength, generating a broad spectrum of trafficking phenotypes. Finally, using sequences from our screen, we found that the potency of di-lysine, but not di-arginine, mediated endoplasmic reticulum localization was correlated with the strength of interaction with α-COP