The crucial function of macrophages in a variety of biological processes and pathologies render these cells important targets for gene therapeutic interventions. Commonly used synthetic gene delivery vectors have not been successful in transfecting these non-dividing cells. A combination strategy involving cationic liposomes to condense and carry DNA, transferrin to facilitate cellular uptake, and the pH-sensitive peptide GALA to promote endosome destabilization, resulted in significant expression of a luciferase gene. Transfection of macrophages was dependent on the degree of differentiation of the cells. The quaternary complexes of cationic liposomes, DNA, transferrin, and GALA exhibited a net negative charge, which may obviate a limitation of cationic synthetic vectors in vivo. The lack of cytotoxicity and the expected back of immunogenicity of these complexes may render them useful for gene delivery to macrophages in vivo