7 research outputs found

    A Miniaturized and Highly Sensitive Microwave Sensor Based on CSRR for Characterization of Liquid Materials

    Get PDF
    In this work, a miniaturized and highly sensitive microwave sensor based on a complementary split-ring resonator (CSRR) is proposed for the detection of liquid materials. The modeled sensor was designed based on the CSRR structure with triple rings (TRs) and a curve feed for improved measurement sensitivity. The designed sensor oscillates at a single frequency of 2.5 GHz, which is simulated using an Ansys HFSS simulator. The electromagnetic simulation explains the basis of the mode resonance of all two-port resonators. Five variations of the liquid media under tests (MUTs) are simulated and measured. These liquid MUTs are as follows: without a sample (without a tube), air (empty tube), ethanol, methanol, and distilled water (DI). A detailed sensitivity calculation is performed for the resonance band at 2.5 GHz. The MUTs mechanism is performed with a polypropylene tube (PP). The samples of dielectric material are filled into PP tube channels and loaded into the CSRR center hole; the E-fields around the sensor affect the relationship with the liquid MUTs, resulting in a high Q-factor value. The final sensor has a Q-factor value and sensitivity of 520 and 7.032 (MHz)/Er) at 2.5 GHz, respectively. Due to the high sensitivity of the presented sensor for characterizing various liquid penetrations, the sensor is also of interest for accurate estimations of solute concentrations in liquid media. Finally, the relationship between the permittivity and Q-factor value at the resonant frequency is derived and investigated. These given results make the presented resonator ideal for the characterization of liquid materials.Publicad

    A New CPW-Fed Semicircular Inverted Triangular Shaped Antenna Based on Mixed-Alternate Approach for 5G Millimeter-Wave Wireless Applications

    No full text
    This paper presents the design and development of a new semicircular inverted triangular shaped antenna for 5G millimeter-wave wireless applications. An alternate-mixed approach based on cavity, slots and loaded stubs is employed in the designed antenna lattice. The suggested antenna structure is formed by a radiator, partial defected metal ground plane and a 50 Ω coplanar waveguide. The proposed antenna resonated at multiple frequencies by the setting up of the proper dimensions and locations of the rectangles, elliptical cut slots and cavity stubs. Furthermore, a parametric analysis is carried out to examine the antenna’s effectiveness and impedance-matching controls. The proposed structure is realized on the low-cost RT/Duroid Rogers RO3010™ laminate with an overall small size of 1.381λ0 × 1.08λ0 × 0.098λ0, where λ0 represents the wavelength corresponding to the minimum edge frequency of the 23 GHz at 10 dB impedance bandwidth of the antenna. The antenna’s key characteristics in terms of bandwidth, gain, radiation patterns and current distribution have been investigated. The antenna exhibits high performance, including an impedance bandwidth of 19 GHz ranging from 23 GHz to 42 GHz, results in 58.46% wider relative bandwidth calculated at 10 dB scaled return loss, a peak realized gain of 6.75 dBi, optimal radiation efficiency of 89%, stable omnidirectional-shaped radiation patterns and robust current distribution across the antenna structure at multiple resonances. The designed antenna has been fabricated and simulation experiments evaluated its performance. The results demonstrate that the antenna is appropriate and can be well integrated into 5G millimeter-wave wireless communication systems

    Exploring a radically new exponential Retinex model for multi-task environments

    No full text
    The Retinex Theory (RT) and its adaptations have gained significant popularity in the field of image processing. Nevertheless, traditional Retinex algorithms are generally customized to specific tasks. Besides, their use of logarithmic transformation (LT) to convert the multiplicative model to an additive one often results in the loss of texture information in the reflectance layer. In contrast to conventional methods, our approach involves direct decomposition of the observed image. This approach circumvents the necessity of intermediate transformations, thereby preserving essential texture features. In this study, we introduce a weight-aware â„“1-â„“2 technique based on the assumption that the reflectance layer is discontinuous and the illumination layer is spatially smooth. To preserve texture and structural information in the illumination layer, we introduce a weight-aware illumination component coefficient, â„“1-norm, and estimate the reflectance component using â„“2-norm. By utilizing weight-aware coefficients, the proposed technique is highly effective in addressing the issue of texture loss in the reflectance layer. Additionally, we employ â„“2-norm to extract accurate information from the reflectance layer and implement a bright channel prior to prevent ambiguity during the decomposition process. We utilize an alternating minimization approach to obtain the optimal objective function solution and modify the illumination layer using gamma and non-linear stretching algorithms. Our proposed technique not only tackles the problem of texture duplication but also improves the quality of low-light images, and can be seamlessly integrated with various image and vision-based tasks. Our evaluation of eight benchmark datasets using 15 quality metrics, along with a variety of 22 conventional and modern algorithms, shows that the proposed algorithm is capable of delivering competitive qualitative and quantitative results without compromising its flexibility and scalability. Besides, the proposed model is evaluated on retinal images, and the results demonstrate a substantial improvement in the accuracy of learning-based models

    A Compact High-Gain Coplanar Waveguide-Fed Antenna for Military RADAR Applications

    No full text
    This paper presents a new design of a compact, high-gain coplanar waveguide-fed antenna and proposes a multielement approach to attain enhanced characteristics. The proposed method overcomes the simulation and geometrical complexity and achieves optimal performance features. The antenna prototype is carefully designed, and simulation results have been analyzed. The proposed antenna was fabricated on a new WangLing TP-2 laminate with dimensions (0.195 lambda x 0.163 lambda x 0.0052 lambda) at the lowest resonance of 9.78 GHz. The results have been tested and experimentally verified. The antenna model achieved excellent performance including a peak realized gain better than 9.0 dBi, optimal radiation efficiency better than 87.6% over the operating band, and a good relative bandwidth of 11.48% at 10 dB return loss. Symmetrical stable far-field radiation pattern in orthogonal planes and strong distribution of current are observed. Moreover, a comparative analysis with state-of-the-artwork is presented. The measured and simulation result shows a good agreement. The high-performance antenna results reveal that the proposed model is a good contender of military airborne, land, and naval radar applications.Funding Agencies|National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61871219]</p

    A Novel Low-Cost Compact High-Performance Flower-Shaped Radiator Design for Modern Smartphone Applications

    No full text
    This manuscript examines the design principle and real-world validation of a new miniaturized high-performance flower-shaped radiator (FSR). The antenna prototype consists of an ultracompact square metallic patch of 0.116λ0 × 0.116λ0 (λ0 is the free space wavelength at 3.67 GHz), a rectangular microstrip feed network, and a partial metal ground plane. A novel, effective, and efficient approach based on open circuit loaded stubs is employed to achieve the antenna’s optimal performance features. Rectangular, triangular, and circular disc stubs were added to the simple structure of the square radiator, and hence, the FSR configuration was formed. The proposed antenna was imprinted on a low-cost F4B laminate with low profile thickness of 0.018λ0, relative permittivity εr = 2.55, and dielectric loss tangent δ = 0.0018. The designed radiator has an overall small size of 0.256λ0 × 0.354λ0. The parameter study of multiple variables and their influence on the performance results has been extensively studied. Moreover, the impact of different substrate materials, impedance bandwidths, resonance tuning, and impedance matching has also been analyzed. The proposed antenna model has been designed, simulated, and fabricated. The designed antenna exhibits a wide bandwidth of 5.33 GHz ranging from 3.67 to 9.0 GHz at 10 dB return loss, which resulted in an 83.6% fractional impedance bandwidth; a maximum gain of 7.3 dBi at 8.625 GHz; optimal radiation efficiency of 89% at 4.5 GHz; strong intensity current flow across the radiator; and stable monopole-like far-field radiation patterns. Finally, a comparison between the scientific results and newly published research has been provided. The antenna’s high-performance simulated and measured results are in a good agreement; hence, they make the proposed antenna an excellent choice for modern smartphones’ connectivity with the sub-6 GHz frequency spectrum of modern fifth-generation (5G) mobile communication application
    corecore