54 research outputs found

    Magnetoconductance anisotropy of a polymer thin film at the onset of metallicity

    Get PDF
    Thin films of poly(2,5-bis(3-dodecyl-2-yl)-thieno[3,2-b] thiophene) (C12-PBTTT) polymer under electrolyte gating and doping are investigated as model systems for organic thin films devices approaching the metallic side of a metal-insulator (M-I) transition. For the most doped samples, with an estimated density reaching 8 x 10(20) cm(-3) holes and a conductivity exceeding 1000 S cm(-1), a positive high-field magnetoconductance is found in a limited temperature range window and only when the field is perpendicular to the sample plane. This signature of weak localization, combined with indications of finite zero-temperature conductivity, allows us to identify delocalized metallic-like transport in these thin films, even though the conductivity decreases when cooling down the samples

    Conductivity in organic semiconductors hybridized with the vacuum field

    Full text link
    Organic semiconductors have generated considerable interest for their potential for creating inexpensive and flexible devices easily processed on a large scale [1-11]. However technological applications are currently limited by the low mobility of the charge carriers associated with the disorder in these materials [5-8]. Much effort over the past decades has therefore been focused on optimizing the organisation of the material or the devices to improve carrier mobility. Here we take a radically different path to solving this problem, namely by injecting carriers into states that are hybridized to the vacuum electromagnetic field. These are coherent states that can extend over as many as 10^5 molecules and should thereby favour conductivity in such materials. To test this idea, organic semiconductors were strongly coupled to the vacuum electromagnetic field on plasmonic structures to form polaritonic states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility as revealed when the structure is gated in a transistor configuration. A theoretical quantum model is presented that confirms the delocalization of the wave-functions of the hybridized states and the consequences on the conductivity. While this is a proof-of-principle study, in practice conductivity mediated by light-matter hybridized states is easy to implement and we therefore expect that it will be used to improve organic devices. More broadly our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.Comment: 16 pages, 13 figure

    The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

    Get PDF
    We prepare and investigate two-dimensional (2D) single-layer arrays and multilayered networks of gold nanoparticles derivatized with conjugated hetero-aromatic molecules, i.e., S-(4-{[2,6-bipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)thiolate (herein S-BPP), as capping ligands. These structures are fabricated by a combination of self-assembly and microcontact printing techniques, and are characterized by electron microscopy, UV–visible spectroscopy and Raman spectroscopy. Selective binding of the S-BPP molecules to the gold nanoparticles through Au–S bonds is found, with no evidence for the formation of N–Au bonds between the pyridine or pyrazole groups of BPP and the gold surface. Subtle, but significant shifts with temperature of specific Raman S-BPP modes are also observed. We attribute these to dynamic changes in the orientation and/or increased mobility of the molecules on the gold nanoparticle facets. As for their conductance, the temperature-dependence for S-BPP networks differs significantly from standard alkanethiol-capped networks, especially above 220 K. Relating the latter two observations, we propose that dynamic changes in the molecular layers effectively lower the molecular tunnel barrier for BPP-based arrays at higher temperatures

    Symptom and Quality of Life Improvement in LUX-Lung 8, an Open-Label Phase III Study of Second-Line Afatinib Versus Erlotinib in Patients With Advanced Squamous Cell Carcinoma of the Lung After First-Line Platinum-Based Chemotherapy

    Get PDF
    INTRODUCTION: In the phase III LUX-Lung 8 trial, afatinib significantly improved progression-free survival (PFS) and overall survival (OS) versus erlotinib in patients with squamous cell carcinoma (SCC) of the lung progressing during or after platinum-based chemotherapy. Patient-reported outcomes (PROs) and health-related quality of life (QoL) in these patients are presented. PATIENTS AND METHODS: Patients (n = 795) were randomized 1:1 to oral afatinib (40 mg/d) or erlotinib (150 mg/d). PROs were collected (baseline, every 28 days until progression, 28 days after discontinuation) using the European Organization for Research and Treatment of Cancer QoL questionnaire and lung cancer-specific module. The percentage of patients improved during therapy, time to deterioration (TTD), and changes over time were analyzed for prespecified lung cancer-related symptoms and global health status (GHS)/QoL. RESULTS: Questionnaire compliance was 77.3% to 99.0% and 68.7% to 99.0% with afatinib and erlotinib, respectively. Significantly more patients who received afatinib versus erlotinib experienced improved scores for GHS/QoL (36% vs. 28%; P = .041) and cough (43% vs. 35%; P = .029). Afatinib significantly delayed TTD in dyspnea (P = .008) versus erlotinib, but not cough (P = .256) or pain (P = .869). Changes in mean scores favored afatinib for cough (P = .0022), dyspnea (P = .0007), pain (P = .0224), GHS/QoL (P = .0320), and all functional scales. Differences in adverse events between afatinib and erlotinib, specifically diarrhea, did not affect GHS/QoL. CONCLUSION: In patients with SCC of the lung, second-line afatinib was associated with improved prespecified disease-related symptoms and GHS/QoL versus erlotinib, complementing PFS and OS benefits with afatinib

    Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors

    Get PDF
    Objective To report the induction of anti-Ma2 antibody-associated paraneoplastic neurologic syndrome (Ma2-PNS) in 6 patients after treatment with immune checkpoint inhibitors (ICIs). We also analyzed (1) patient clinical features compared with a cohort of 44 patients who developed Ma2-PNS without receiving ICI treatment and (2) the frequency of neuronal antibody detection before and after ICI implementation. Methods Retrospective nationwide study of all patients with Ma2-PNS developed during ICI treatment between 2017 and 2018. Results Our series of patients included 5 men and 1 woman (median age, 63 years). The patients were receiving nivolumab (n = 3), pembrolizumab (n = 2), or a combination of nivolumab and ipilimumab (n = 1) for treatment of neoplasms that included lung (n = 4) and kidney (n = 1) cancers and pleural mesothelioma (n = 1). Clinical syndromes comprised a combination of limbic encephalitis and diencephalitis (n = 3), isolated limbic encephalitis (n = 2), and a syndrome characterized by ophthalmoplegia and head drop (n = 1). No significant clinical difference was observed between our 6 patients and the overall cohort of Ma2-PNS cases. Post-ICI Ma2-PNS accounted for 35% of the total 17 Ma2-PNS diagnosed in our center over the 2017-2018 biennium. Eight cases had been detected in the preceding biennium 2015-2016, corresponding to a 112% increase of Ma2-PNS frequency since the implementation of ICIs in France. Despite ICI withdrawal and immunotherapy, 4/6 patients died, and the remaining 2 showed a moderate to severe disability. Conclusions We show a clear association between ICI use and increased diagnosis of Ma2-PNS. Physicians need to be aware that ICIs can trigger Ma2-PNS because clinical presentation can be challenging

    Magnetoconductance anisotropy of a polymer thin film at the onset of metallicity

    Get PDF
    Thin films of poly(2,5-bis(3-dodecyl-2-yl)-thieno[3,2-b] thiophene) (C12-PBTTT) polymer under electrolyte gating and doping are investigated as model systems for organic thin films devices approaching the metallic side of a metal-insulator (M-I) transition. For the most doped samples, with an estimated density reaching 8 x 10(20) cm(-3) holes and a conductivity exceeding 1000 S cm(-1), a positive high-field magnetoconductance is found in a limited temperature range window and only when the field is perpendicular to the sample plane. This signature of weak localization, combined with indications of finite zero-temperature conductivity, allows us to identify delocalized metallic-like transport in these thin films, even though the conductivity decreases when cooling down the samples. (C) 2015 AIP Publishing LLC

    Bacterial infection profiles in lung cancer patients with febrile neutropenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chemotherapy used to treat lung cancer causes febrile neutropenia in 10 to 40% of patients. Although most episodes are of undetermined origin, an infectious etiology can be suspected in 30% of cases. In view of the scarcity of data on lung cancer patients with febrile neutropenia, we performed a retrospective study of the microbiological characteristics of cases recorded in three medical centers in the Picardy region of northern France.</p> <p>Methods</p> <p>We analyzed the medical records of lung cancer patients with neutropenia (neutrophil count < 500/mm<sup>3</sup>) and fever (temperature > 38.3°C).</p> <p>Results</p> <p>The study included 87 lung cancer patients with febrile neutropenia (mean age: 64.2). Two thirds of the patients had metastases and half had poor performance status. Thirty-three of the 87 cases were microbiologically documented. Gram-negative bacteria (mainly enterobacteriaceae from the urinary and digestive tracts) were identified in 59% of these cases. <it>Staphylococcus </it>species (mainly <it>S. aureus</it>) accounted for a high proportion of the identified Gram-positive bacteria. Bacteremia accounted for 60% of the microbiologically documented cases of fever. 23% of the blood cultures were positive. 14% of the infections were probably hospital-acquired and 14% were caused by multidrug-resistant strains. The overall mortality rate at day 30 was 33% and the infection-related mortality rate was 16.1%. Treatment with antibiotics was successful in 82.8% of cases. In a multivariate analysis, predictive factors for treatment failure were age >60 and thrombocytopenia < 20000/mm<sup>3</sup>.</p> <p>Conclusion</p> <p>Gram-negative species were the most frequently identified bacteria in lung cancer patients with febrile neutropenia. Despite the success of antibiotic treatment and a low-risk neutropenic patient group, mortality is high in this particular population.</p
    • …
    corecore