7 research outputs found

    Optimising programming to reduce side effects of subthalamic nucleus deep brain stimulation in Parkinson’s Disease

    Get PDF
    Subthalamic nucleus deep brain stimulation (STN DBS) is a widely used treatment for Parkinson’s disease patients with motor complications refractory to medical management. However, a significant proportion of treated patients suffer from stimulation induced side effects. Conventional options to address these by modulation of stimulation parameters and programming configurations have been limited. In recent years, technological advances have resulted in the emergence of novel programming features, including the use of short pulse width (PW) and directional steering, that represent further avenues to explore in this regard. In this thesis, I will present data on the utility of these programming techniques in alleviating stimulation induced side effects, and explore mechanisms that may mediate any observed effects. The data presented here is derived from four studies. Study 1 quantified the therapeutic window using short PW stimulation at 30μs relative to conventional 60μs settings. Study 2 represents a randomised controlled trial on short PW in chronic STN DBS patients with dysarthria. Study 3 evaluated the utility of directional steering, short PW, and the combination of these features in reversing stimulation induced dysarthria, dyskinesia, and pyramidal side effects. The findings of these studies suggest that short PW significantly increases the therapeutic window in terms of amplitude and charge, and that while it may not benefit chronic dysarthric patients collectively, directional steering and short PW can each significantly improve reversible stimulation induced side effects early in the course of STN DBS therapy. These novel techniques represent effective additional tools to conventional methods for optimising stimulation. In study 4, imaging and visualisation software are used to model and explore shifts in volume of tissue activated based on clinical data from study 3, and quantitatively compare charge per pulse, in order to explore potential mechanisms underlying the changes seen with these techniques

    Clinical outcomes after MRI connectivity-guided radiofrequency thalamotomy for tremor

    Get PDF
    OBJECTIVE: Radiofrequency thalamotomy (RF-T) is an established treatment for refractory tremor. It is unclear whether connectivity-guided targeting strategies could further augment outcomes. The aim of this study was to evaluate the efficacy and safety of MRI connectivity-guided RF-T in severe tremor. METHODS: Twenty-one consecutive patients with severe tremor (14 with essential tremor [ET], 7 with Parkinson's disease [PD]) underwent unilateral RF-T at a single institution between 2017 and 2020. Connectivity-derived thalamic segmentation was used to guide targeting. Changes in the Fahn-Tolosa-Marin Rating Scale (FTMRS) were recorded in treated and nontreated hands as well as procedure-related side effects. RESULTS: Twenty-three thalamotomies were performed (with 2 patients receiving a repeated intervention). The mean postoperative assessment time point was 14.1 months. Treated-hand tremor scores improved by 63.8%, whereas nontreated-hand scores deteriorated by 10.1% (p < 0.01). Total FTMRS scores were significantly better at follow-up compared with baseline (mean 34.7 vs 51.7, p = 0.016). Baseline treated-hand tremor severity (rho = 0.786, p < 0.01) and total FTMRS score (rho = 0.64, p < 0.01) best correlated with tremor improvement. The most reported side effect was mild gait ataxia (n = 11 patients). CONCLUSIONS: RF-T guided by connectivity-derived segmentation is a safe and effective option for severe tremor in both PD and ET

    Effects of deep brain stimulation frequency on eye movements and cognitive control

    Get PDF
    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson's disease (PD). Varying the frequency DBS has differential effects on axial and distal limb functions, suggesting differing modulation of relevant pathways. The STN is also a critical node in oculomotor and associative networks, but the effect of stimulation frequency on these networks remains unknown. This study aimed to investigate the effects of 80 hz vs. 130 Hz frequency STN-DBS on eye movements and executive control. Twenty-one STN-DBS PD patients receiving 130 Hz vs. 80 Hz stimulation were compared to a healthy control group (n = 16). All participants were tested twice in a double-blind manner. We examined prosaccades (latency and gain) and antisaccades (latency of correct and incorrect antisaccades, error rate and gain of the correct antisaccades). Executive function was tested with the Stroop task. The motor condition was assessed using Unified Parkinson's Disease Rating Scale part III. The antisaccadic error rate was higher in patients (p = 0.0113), more so in patients on 80 Hz compared to 130 Hz (p = 0.001) stimulation. The differences between patients and controls and between frequencies for all other eye-movements or cognitive measures were not statistically significant. We show that 80 Hz STN-DBS in PD reduces the ability to maintain stable fixation but does not alter inhibition, resulting in a higher antisaccade error rate presumably due to less efficient fixation, without altering the motor state. This provides a wider range of stimulation parameters that can reduce specific DBS-related effects without affecting motor outcomes

    Effects of deep brain stimulation frequency on eye movements and cognitive control

    No full text
    Abstract Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for Parkinson’s disease (PD). Varying the frequency DBS has differential effects on axial and distal limb functions, suggesting differing modulation of relevant pathways. The STN is also a critical node in oculomotor and associative networks, but the effect of stimulation frequency on these networks remains unknown. This study aimed to investigate the effects of 80 hz vs. 130 Hz frequency STN-DBS on eye movements and executive control. Twenty-one STN-DBS PD patients receiving 130 Hz vs. 80 Hz stimulation were compared to a healthy control group (n = 16). All participants were tested twice in a double-blind manner. We examined prosaccades (latency and gain) and antisaccades (latency of correct and incorrect antisaccades, error rate and gain of the correct antisaccades). Executive function was tested with the Stroop task. The motor condition was assessed using Unified Parkinson’s Disease Rating Scale part III. The antisaccadic error rate was higher in patients (p = 0.0113), more so in patients on 80 Hz compared to 130 Hz (p = 0.001) stimulation. The differences between patients and controls and between frequencies for all other eye-movements or cognitive measures were not statistically significant. We show that 80 Hz STN-DBS in PD reduces the ability to maintain stable fixation but does not alter inhibition, resulting in a higher antisaccade error rate presumably due to less efficient fixation, without altering the motor state. This provides a wider range of stimulation parameters that can reduce specific DBS-related effects without affecting motor outcomes

    Connectivity derived thalamic segmentation in deep brain stimulation for tremor

    Get PDF
    The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing

    Globus pallidal deep brain stimulation for Tourette syndrome:Effects on cognitive function

    Get PDF
    INTRODUCTION: In a double-blind randomized crossover trial, we previously established that bilateral deep brain stimulation of the anteromedial globus pallidus internus (GPiam-DBS) is effective in significantly reducing tic severity in patients with refractory Tourette syndrome (TS). Here, we report the effects of bilateral GPiam-DBS on cognitive function in 11 of the 13 patients who had participated in our double-blind cross-over trial of GPi-DBS. METHODS: Patients were assessed at baseline (4 weeks prior to surgery) and at the end of each of the three-month blinded periods, with stimulation either ON or OFF. The patients were evaluated on tests of memory (California Verbal Learning Test-II (CVLT-II); Corsi blocks; Short Recognition Memory for Faces), executive function (D-KEFS Stroop color-word interference, verbal fluency, Trail-making test, Hayling Sentence Completion test), and attention (Paced Auditory Serial Addition Test, Numbers and Letters Test). RESULTS: GPiam-DBS did not produce any significant change in global cognition. Relative to pre-operative baseline assessment verbal episodic memory on the CVLT-II and set-shifting on the Trail-making Test were improved with DBS OFF. Performance on the cognitive tests were not different with DBS ON versus DBS OFF. GPiam-DBS did not alter aspects of cognition that are impaired in TS such as inhibition on the Stroop interference task or the Hayling Sentence Completion test. CONCLUSIONS: This study extends previous findings providing data showing that GPiam-DBS does not adversely affect cognitive domains such as memory, executive function, verbal fluency, attention, psychomotor speed, and information processing. These results indicate that GPiam-DBS does not produce any cognitive deficits in TS

    Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease

    No full text
    Clinical studies of Parkinson’s disease (PD) using a dopamine cell replacment strategy have been tried for more than 30 years. The outcomes following transplantation of human fetal ventral mesencephalic tissue (hfVM) have been variable, with some patients coming off their anti-PD treatment for many years and others not responding and/or developing significant side effects, including graft-induced dyskinesia. This led to a re-appraisal of the best way to do such trials, which resulted in a new European-Union-funded allograft trial with fetal dopamine cells across several centers in Europe. This new trial, TRANSEURO (NCT01898390), is an open-label study in which some individuals in a large observational cohort of patients with mild PD who were undergoing identical assessments were randomly selected to receive transplants of hfVM. The TRANSEURO trial is currently ongoing as researchers have completed both recruitment into a large multicenter observational study of younger onset early-stage PD and transplantation of hfVM in 11 patients. While completion of TRANSEURO is not expected until 2021, we feel that sharing the rationale for the design of TRANSEURO, along with the lessons we have learned along the way, can help inform researchers and facilitate planning of transplants of dopamine-producing cells derived from human pluripotent stem cells for future clinical trials
    corecore