1,147 research outputs found
Biological and Mechanical Approaches to Sunscald Management in Bell Pepper Production
Producing red bell peppers in high temperature and light environments can be challenging because many new semi-indeterminate varieties produce small plant canopies that leave fruit exposed to damage (sunscald) caused by solar radiation. Pepper production in Utah coincides with high air temperatures and solar radiation levels during July, August, and September. Increasing plant canopy size is one way to protect fruit from solar radiation. Low tunnels optimize plant growth by increasing air and soil temperatures. Growing plants under low tunnels early in the season could increase fruit shading later in the season. Another way to protect fruit is by using mechanical shade. Hanging shade cloth over a crop has been shown to decrease air temperatures and solar radiation levels reaching fruit. While the common production practice is to horizontally orient shade cloth, vertically orienting shade cloth may also be effective by providing shade to the crop in the morning and evening.
These protection methods were evaluated in Layton, Utah for effectiveness of increasing yield by decreasing sunscald occurrence. While plants grown under low tunnels for two weeks after transplanting had larger canopies, they did not increase yield or decrease sunscald compared to plants not grown under low tunnels. Vertical shade increased yield and decreased sunscald most effectively when combined with plants grown under low tunnels. Vertical shade protected exposed fruit when the sun was at lower elevations while increased canopy shade protected fruit when the sun was at high solar elevations. Horizontal shade completely eliminated sunscald and produced the largest yields of high quality fruit. The additional costs associated with using supplemental shade were offset by increased yields and higher value of larger fruit.
Separate studies were carried out to determine how sunlight and wind influence the temperature of pepper fruit. Sunlight exceeding 550 W·m-2 increased pepper fruit surface temperature (FST) to damaging levels. Wind decreased pepper FST but moderate wind speeds (3.0 m·s-1) did not decrease it below damaging levels. To insure protection, growers should apply supplemental shade when solar radiation levels exceed 550 W·m-2. These results provide improved guidelines for growers interested in using supplemental shade to provide pepper fruit for local and national consumption. Additionally, pepper growers in high air temperature and light environments can increase productivity and profitability with the use of supplemental shade
Method for Preparing Porous Shells or Gels from Glass Particles
A method is provided for preparing shells, concentric shells or porous, homogenous gels from alkali borate glass particles at low temperatures (i.e. room temperature or less than above 100° C.). The alkali borate glass particles contain one or more cations such as aluminum which react with an aqueous solution containing an anion such as hydroxide to form an aqueous insoluble material having a solubility limit of less than about 0.01 wt. percent. TTie resulting shells or gels may be used in many different applications such as a filler in resins, as filters, precursors for nano-sized powders, as thin surface films or catalyst support media. The resulting shells or gels may also have a chemotherapeutic drug added thereto, following which the resulting product is administered to a mammal and the insoluble material is dissolved form the product in vivo through administration of chelating agent
A millimeter-wave kinetic inductance detector camera for long-range imaging through optical obscurants
Millimeter-wave imaging provides a promising option for long-range target detection through optical obscurants such as fog, which often occur in marine environments. Given this motivation, we are currently developing a 150 GHz polarization-sensitive imager using a relatively new type of superconducting pair-breaking detector, the kinetic inductance detector (KID). This imager will be paired with a 1.5 m telescope to obtain an angular resolution of 0.09° over a 3.5° field of view using 3,840 KIDs. We have fully characterized a prototype KID array, which shows excellent performance with noise strongly limited by the irreducible fluctuations from the ambient temperature background. Full-scale KID arrays are now being fabricated and characterized for a planned demonstration in a maritime environment later this year
Arthropod Borne Disease: The Leading Cause of Fever in Pregnancy on the Thai-Burmese Border
Fever during pregnancy can be harmful for the mother and the infant. In resource poor settings health workers have very few field-based tests that help them identify the cause of infection. This study examined the causes of fever in pregnant women using laboratory support that is typically unavailable to most women living in the tropics. On the Thai-Burmese border there has been a great reduction in malaria in the last 20 years. However malaria remained the leading cause of fever in pregnancy in this study conducted between 2004 and 2006. Urinary tract infection was also a common cause of fever as it is in resource rich countries. Other diseases transmitted by mosquitoes (dengue), ticks (scrub and murine typhus), or rodents (leptospirosis) were common. Scrub and murine typhus were associated with stillbirth and low birth weight. Microscopy remains the most useful tool in the field for the diagnosis of fever in pregnant women. Leptospirosis, dengue and rickettsial infections require improved field-based diagnostic tools to ensure that women receive appropriate antibiotic therapy
A millimeter-wave kinetic inductance detector camera for long-range imaging through optical obscurants
Millimeter-wave imaging provides a promising option for long-range target detection through optical obscurants such as fog, which often occur in marine environments. Given this motivation, we are currently developing a 150 GHz polarization-sensitive imager using a relatively new type of superconducting pair-breaking detector, the kinetic inductance detector (KID). This imager will be paired with a 1.5 m telescope to obtain an angular resolution of 0.09° over a 3.5° field of view using 3,840 KIDs. We have fully characterized a prototype KID array, which shows excellent performance with noise strongly limited by the irreducible fluctuations from the ambient temperature background. Full-scale KID arrays are now being fabricated and characterized for a planned demonstration in a maritime environment later this year
Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation
PURPOSE: Variants in MYBPC3 causing loss of function are the most common cause of hypertrophic cardiomyopathy (HCM). However, a substantial number of patients carry missense variants of uncertain significance (VUS) in MYBPC3. We hypothesize that a structural-based algorithm, STRUM, which estimates the effect of missense variants on protein folding, will identify a subgroup of HCM patients with a MYBPC3 VUS associated with increased clinical risk. METHODS: Among 7,963 patients in the multicenter Sarcomeric Human Cardiomyopathy Registry (SHaRe), 120 unique missense VUS in MYBPC3 were identified. Variants were evaluated for their effect on subdomain folding and a stratified time-to-event analysis for an overall composite endpoint (first occurrence of ventricular arrhythmia, heart failure, all-cause mortality, atrial fibrillation, and stroke) was performed for patients with HCM and a MYBPC3 missense VUS. RESULTS: We demonstrated that patients carrying a MYBPC3 VUS predicted to cause subdomain misfolding (STRUM+, ΔΔG ≤ −1.2 kcal/mol) exhibited a higher rate of adverse events compared with those with a STRUM- VUS (hazard ratio = 2.29, P = 0.0282). In silico saturation mutagenesis of MYBPC3 identified 4,943/23,427 (21%) missense variants that were predicted to cause subdomain misfolding. CONCLUSION: STRUM identifies patients with HCM and a MYBPC3 VUS who may be at higher clinical risk and provides supportive evidence for pathogenicity
Immune checkpoint inhibitor therapy for advanced cutaneous squamous cell carcinoma in Australia: A retrospective real world cohort study
Objectives: To review the outcomes of immune checkpoint inhibitor (ICI) treatment of advanced cutaneous squamous cell carcinoma (CSCC) outside clinical trials. Study design: Retrospective observational study; review of patient records in fifteen Australian institutions. Setting, participants: All Australian adults with locally advanced or metastatic CSCC not amenable to curative surgery or radiotherapy treated with ICIs, 5 May 2017 – 23 May 2022, through a cemiplimab compassionate access scheme (Therapeutic Goods Administration Special Access Scheme) or who personally covered the cost of pembrolizumab prior to the start of the access scheme. Main outcome measures: Best overall response rate (ORR) according to standardised assessment criteria using the hierarchy: Response Evaluation Criteria in Solid Tumors (RECIST 1.1), the modified World Health Organization clinical response criteria, and the Positron Emission Tomography Response Criteria (PERCIST 1.0); overall and progression-free survival. Results: A total of 286 people with advanced CSCC received ICI therapy during May 2017 – May 2022 (cemiplimab, 270; pembrolizumab, 16). Their median age was 75.2 years (range, 39.3–97.5 years) and 232 were men (81%); median follow-up time was 12.2 months (interquartile range, 5.5–20.5 months). Eighty-eight people (31%) were immunocompromised, 27 had autoimmune disease, and 59 of 277 (21%) had ECOG performance scores of 2 or 3. The ORR was 60% (166 of 278 evaluable patients): complete responses were recorded for 74 (27%) and partial responses for 92 patients (33%). Twelve-month overall survival was 78% (95% confidence interval [CI], 72–83%); progression-free survival was 65% (95% CI, 58–70%). Poorer ECOG performance status was associated with poorer overall survival (per unit: adjusted hazard ratio [aHR], 3.0; 95% CI, 2.0–4.3) and progression-free survival (aHR, 2.4; 95% CI, 1.8–3.3), as was being immunocompromised (overall: aHR, 1.8; 95% CI, 1.1–3.0; progression-free: aHR, 1.8; 95% CI, 1.2–2.7). Fifty-five people (19%) reported immune-related adverse events of grade 2 or higher; there were no treatment-related deaths. Conclusion: In our retrospective study, the effectiveness and toxicity of ICI therapy were similar to those determined in clinical trials. Our findings suggest that ICIs could be effective and well tolerated by people with advanced CSCC who are ineligible for clinical trials
Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients with Hypertrophic Cardiomyopathy
Background - Pathogenic variants in MYBPC3, encoding cardiac MyBP-C, are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique MYBPC3 variants and relatively small genotyped HCM cohorts have precluded detailed genotype-phenotype correlations. Methods - Patients with HCM and MYBPC3 variants were identified from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Variant types and locations were analyzed, morphologic severity was assessed, and time-event analysis was performed (composite clinical outcome of sudden death, class III/IV heart failure, LVAD/transplant, atrial fibrillation). For selected missense variants falling in enriched domains, myofilament localization and degradation rates were measured in vitro. Results - Among 4,756 genotyped HCM patients in SHaRe, 1,316 patients were identified with adjudicated pathogenic truncating (N=234 unique variants, 1047 patients) or non-truncating (N=22 unique variants, 191 patients) variants in MYBPC3. Truncating variants were evenly dispersed throughout the gene, and hypertrophy severity and outcomes were not associated with variant location (grouped by 5' - 3' quartiles or by founder variant subgroup). Non-truncating pathogenic variants clustered in the C3, C6, and C10 domains (18 of 22, 82%, p<0.001 vs. gnomAD common variants) and were associated with similar hypertrophy severity and adverse event rates as observed with truncating variants. MyBP-C with variants in the C3, C6, and C10 domains was expressed in rat ventricular myocytes. C10 mutant MyBP-C failed to incorporate into myofilaments and degradation rates were accelerated by ~90%, while C3 and C6 mutant MyBP-C incorporated normally with degradation rate similar to wild-type. Conclusions - Truncating variants account for 91% of MYBPC3 pathogenic variants and cause similar clinical severity and outcomes regardless of location, consistent with locus-independent loss-of-function. Non-truncating MYBPC3 pathogenic variants are regionally clustered, and a subset also cause loss-of-function through failure of myofilament incorporation and rapid degradation. Cardiac morphology and clinical outcomes are similar in patients with truncating vs. non-truncating variants
Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations
The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 10^6 cm^(−3)), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss
- …