3 research outputs found

    Isolation and Identification of a Urinary Biomarker for Lung Cancer: 27-Nor-5β-Cholestane-3α,7α,12α,24<i>R</i>,25<i>S</i> Pentol Glucuronide and Its Deuterated Analog

    No full text
    An untargeted metabolomic study identified four potential lung cancer diagnostic biomarkers in human urine. One of the potential biomarkers was an unidentified feature possessing a m/z value of 561+. “561+” was isolated from human urine and tentatively identified as 27-nor-5β-cholestane-3α,7α,12α,24,25 pentol glucuronide with unknown C24,25 stereochemistry using 1H NMR and mass spectrometry. In a prior report, the C24,25 stereochemistry of the aglycone, 27-nor-5β-cholestane-3α,7α,12α,24,25 pentol, was found to be 24S,25R through GC analysis of the acetonide-TMS derivative. An authentic sample was prepared and found not to have the same stereochemistry as ”561+”. To identify the C24,25 stereochemistry, four C24,C25 diastereoisomeric alcohols of 27-nor-5β-cholestane-3α,7α,12α,24,25 pentol were prepared from chiral amino acids. Using an LCMS method, the C24,C25 stereochemistry of the “561+” aglycone was determined to be 24R,25S. With the correct aglycone in hand, it was coupled with glucuronic acid to complete the first reported synthesis of 27-nor-5β-cholestane-3α,7α,12α,24R,25S pentol glucuronide. Deuterium labeled 27-nor-5β-cholestane-3α,7α,12α,24R,25S pentol was also synthesized for use as an internal standard for MS quantitation

    Aryl Hydrocarbon Receptor Promotes Liver Polyploidization and Inhibits PI3K, ERK, and Wnt/β-Catenin Signaling

    Get PDF
    Summary: Aryl hydrocarbon receptor (AhR) deficiency alters tissue homeostasis. However, how AhR regulates organ maturation and differentiation remains mostly unknown. Liver differentiation entails a polyploidization process fundamental for cell growth, metabolism, and stress responses. Here, we report that AhR regulates polyploidization during the preweaning-to-adult mouse liver maturation. Preweaning AhR-null (AhR−/−) livers had smaller hepatocytes, hypercellularity, altered cell cycle regulation, and enhanced proliferation. Those phenotypes persisted in adult AhR−/− mice and correlated with compromised polyploidy, predominance of diploid hepatocytes, and enlarged centrosomes. Phosphatidylinositol-3-phosphate kinase (PI3K), extracellular signal-regulated kinase (ERK), and Wnt/β-catenin signaling remained upregulated from preweaning to adult AhR-null liver, likely increasing mammalian target of rapamycin (mTOR) activation. Metabolomics revealed the deregulation of mitochondrial oxidative phosphorylation intermediates succinate and fumarate in AhR−/− liver. Consistently, PI3K, ERK, and Wnt/β-catenin inhibition partially rescued polyploidy in AhR−/− mice. Thus, AhR may integrate survival, proliferation, and metabolism for liver polyploidization. Since tumor cells tend to be polyploid, AhR modulation could have therapeutic value in the liver. : Developmental Biology; Cancer Systems Biology; Metabolomics Subject Areas: Developmental Biology, Cancer Systems Biology, Metabolomic
    corecore