3,079 research outputs found
Nanofiber-based optical trapping of cold neutral atoms
We present experimental techniques and results related to the optimization
and characterization of our nanofiber-based atom trap [Vetsch et al., Phys.
Rev. Lett. 104, 203603 (2010)]. The atoms are confined in an optical lattice
which is created using a two-color evanescent field surrounding the optical
nanofiber. For this purpose, the polarization state of the trapping light
fields has to be properly adjusted. We demonstrate that this can be
accomplished by analyzing the light scattered by the nanofiber. Furthermore, we
show that loading the nanofiber trap from a magneto-optical trap leads to
sub-Doppler temperatures of the trapped atomic ensemble and yields a
sub-Poissonian distribution of the number of trapped atoms per trapping site
ALTRUISM VIA KIN-SELECTION STRATEGIES THAT RELY ON ARBITRARY TAGS WITH WHICH THEY COEVOLVE
Hamilton's rule explains when natural selection will favor altruism between conspecifics, given their degree of relatedness. In practice, indicators of relatedness (such as scent) coevolve with strategies based on these indicators, a fact not included in previous theories of kin recognition. Using a combination of simulation modeling and mathematical extension of Hamilton's rule, we demonstrate how altruism can emerge and be sustained in a coevolutionary setting where relatedness depends on an individual's social environment and varies from one locus to another. The results support a very general expectation of widespread, and not necessarily weak, conditional altruism in nature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72180/1/j.0014-3820.2004.tb00465.x.pd
An Ultra-Stable Referenced Interrogation System in the Deep Ultraviolet for a Mercury Optical Lattice Clock
We have developed an ultra-stable source in the deep ultraviolet, suitable to
fulfill the interrogation requirements of a future fully-operational lattice
clock based on neutral mercury. At the core of the system is a Fabry-P\'erot
cavity which is highly impervious to temperature and vibrational perturbations.
The mirror substrate is made of fused silica in order to exploit the
comparatively low thermal noise limits associated with this material. By
stabilizing the frequency of a 1062.6 nm Yb-doped fiber laser to the cavity,
and including an additional link to LNE-SYRTE's fountain primary frequency
standards via an optical frequency comb, we produce a signal which is both
stable at the 1E-15 level in fractional terms and referenced to primary
frequency standards. The signal is subsequently amplified and frequency-doubled
twice to produce several milliwatts of interrogation signal at 265.6 nm in the
deep ultraviolet.Comment: 7 pages, 6 figure
Introduction to protein folding for physicists
The prediction of the three-dimensional native structure of proteins from the
knowledge of their amino acid sequence, known as the protein folding problem,
is one of the most important yet unsolved issues of modern science. Since the
conformational behaviour of flexible molecules is nothing more than a complex
physical problem, increasingly more physicists are moving into the study of
protein systems, bringing with them powerful mathematical and computational
tools, as well as the sharp intuition and deep images inherent to the physics
discipline. This work attempts to facilitate the first steps of such a
transition. In order to achieve this goal, we provide an exhaustive account of
the reasons underlying the protein folding problem enormous relevance and
summarize the present-day status of the methods aimed to solving it. We also
provide an introduction to the particular structure of these biological
heteropolymers, and we physically define the problem stating the assumptions
behind this (commonly implicit) definition. Finally, we review the 'special
flavor' of statistical mechanics that is typically used to study the
astronomically large phase spaces of macromolecules. Throughout the whole work,
much material that is found scattered in the literature has been put together
here to improve comprehension and to serve as a handy reference.Comment: 53 pages, 18 figures, the figures are at a low resolution due to
arXiv restrictions, for high-res figures, go to http://www.pabloechenique.co
Dispersive Optical Interface Based on Nanofiber-Trapped Atoms
We dispersively interface an ensemble of one thousand atoms trapped in the
evanescent field surrounding a tapered optical nanofiber. This method relies on
the azimuthally-asymmetric coupling of the ensemble with the evanescent field
of an off-resonant probe beam, transmitted through the nanofiber. The resulting
birefringence and dispersion are significant; we observe a phase shift per atom
of \,1\,mrad at a detuning of six times the natural linewidth,
corresponding to an effective resonant optical density per atom of 0.027.
Moreover, we utilize this strong dispersion to non-destructively determine the
number of atoms.Comment: 4 pages, 4 figure
Controlling fast transport of cold trapped ions
We realize fast transport of ions in a segmented micro-structured Paul trap.
The ion is shuttled over a distance of more than 10^4 times its groundstate
wavefunction size during only 5 motional cycles of the trap (280 micro meter in
3.6 micro seconds). Starting from a ground-state-cooled ion, we find an
optimized transport such that the energy increase is as low as 0.10 0.01
motional quanta. In addition, we demonstrate that quantum information stored in
a spin-motion entangled state is preserved throughout the transport. Shuttling
operations are concatenated, as a proof-of-principle for the shuttling-based
architecture to scalable ion trap quantum computing.Comment: 5 pages, 4 figure
Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber
Trapping and optically interfacing laser-cooled neutral atoms is an essential
requirement for their use in advanced quantum technologies. Here we
simultaneously realize both of these tasks with cesium atoms interacting with a
multi-color evanescent field surrounding an optical nanofiber. The atoms are
localized in a one-dimensional optical lattice about 200 nm above the nanofiber
surface and can be efficiently interrogated with a resonant light field sent
through the nanofiber. Our technique opens the route towards the direct
integration of laser-cooled atomic ensembles within fiber networks, an
important prerequisite for large scale quantum communication schemes. Moreover,
it is ideally suited to the realization of hybrid quantum systems that combine
atoms with, e.g., solid state quantum devices
- …