87 research outputs found

    Axillary lymph node dissection combined with radiotherapy for trichilemmal carcinoma with giant lymph node metastasis: A case report

    Get PDF
    BackgroundTrichilemmal carcinoma (TC) is a rare malignancy with a poor outcome if local recurrence and distant metastasis occur. There is no treatment strategy for such a disease.Case presentationWe reported a complicated case of TC in the right lower abdomen with ipsilateral axillary and inguinal lymph node metastases. After surgery and radiotherapy, there has been no recurrence or metastasis in the follow-up to date.ConclusionWe believe that even though considered a tumor of low malignant potential, TC still has the risk of recurrence and metastasis, and the lymph node status should be identified if a high suspicion or diagnosis is made. Regional lymph node dissection followed by local radiotherapy is recommended as the optimal treatment strategy for patients with lymph node metastases of TC. Screening for metastasis and close follow-up are indispensable for improving prognosis

    Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies

    Get PDF
    Expansion microscopy (ExM) enables imaging of preserved specimens with nanoscale precision on diffraction-limited instead of specialized super-resolution microscopes. ExM works by physically separating fluorescent probes after anchoring them to a swellable gel. The first ExM method did not result in the retention of native proteins in the gel and relied on custom-made reagents that are not widely available. Here we describe protein retention ExM (proExM), a variant of ExM in which proteins are anchored to the swellable gel, allowing the use of conventional fluorescently labeled antibodies and streptavidin, and fluorescent proteins. We validated and demonstrated the utility of proExM for multicolor super-resolution (~70 nm) imaging of cells and mammalian tissues on conventional microscopes.United States. National Institutes of Health (1R01GM104948)United States. National Institutes of Health (1DP1NS087724)United States. National Institutes of Health ( NIH 1R01EY023173)United States. National Institutes of Health (1U01MH106011

    Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu

    Get PDF
    Lake Taihu is the third largest freshwater lake in China and is suffering from serious cyanobacterial blooms with the associated drinking water contamination by microcystin (MC) for millions of citizens. So far, most studies on MCs have been limited to two small bays, while systematic research on the whole lake is lacking. To explain the variations in MC concentrations during cyanobacterial bloom, a large-scale survey at 30 sites across the lake was conducted monthly in 2008. The health risks of MC exposure were high, especially in the northern area. Both Microcystis abundance and MC cellular quotas presented positive correlations with MC concentration in the bloom seasons, suggesting that the toxic risks during Microcystis proliferations were affected by variations in both Microcystis density and MC production per Microcystis cell. Use of a powerful predictive modeling tool named generalized additive model (GAM) helped visualize significant effects of abiotic factors related to carbon fixation and proliferation of Microcystis (conductivity, dissolved inorganic carbon (DIC), water temperature and pH) on MC cellular quotas from recruitment period of Microcystis to the bloom seasons, suggesting the possible use of these factors, in addition to Microcystis abundance, as warning signs to predict toxic events in the future. The interesting relationship between macrophytes and MC cellular quotas of Microcystis (i.e., high MC cellular quotas in the presence of macrophytes) needs further investigation

    Résolution de quelques problèmes d'optimisation non linéaire avec l'apprentissage profond

    No full text
    This thesis considers four types of nonlinear optimization problems, namely bimatrix games, nonlinear projection equations (NPEs), nonsmooth convex optimization problems (NCOPs), and chance-constrained games (CCGs).These four classes of nonlinear optimization problems find extensive applications in various domains such as engineering, computer science, economics, and finance.We aim to introduce deep learning-based algorithms to efficiently compute the optimal solutions for these nonlinear optimization problems.For bimatrix games, we use Convolutional Neural Networks (CNNs) to compute Nash equilibria.Specifically, we design a CNN architecture where the input is a bimatrix game and the output is the predicted Nash equilibrium for the game.We generate a set of bimatrix games by a given probability distribution and use the Lemke-Howson algorithm to find their true Nash equilibria, thereby constructing a training dataset.The proposed CNN is trained on this dataset to improve its accuracy. Upon completion of training, the CNN is capable of predicting Nash equilibria for unseen bimatrix games.Experimental results demonstrate the exceptional computational efficiency of our CNN-based approach, at the cost of sacrificing some accuracy.For NPEs, NCOPs, and CCGs, which are more complex optimization problems, they cannot be directly fed into neural networks.Therefore, we resort to advanced tools, namely neurodynamic optimization and Physics-Informed Neural Networks (PINNs), for solving these problems.Specifically, we first use a neurodynamic approach to model a nonlinear optimization problem as a system of Ordinary Differential Equations (ODEs).Then, we utilize a PINN-based model to solve the resulting ODE system, where the end state of the model represents the predicted solution to the original optimization problem.The neural network is trained toward solving the ODE system, thereby solving the original optimization problem.A key contribution of our proposed method lies in transforming a nonlinear optimization problem into a neural network training problem.As a result, we can now solve nonlinear optimization problems using only PyTorch, without relying on classical convex optimization solvers such as CVXPY, CPLEX, or Gurobi.Cette thèse considère quatre types de problèmes d'optimisation non linéaire, à savoir les jeux de bimatrice, les équations de projection non linéaire (NPEs), les problèmes d'optimisation convexe non lisse (NCOPs) et les jeux à contraintes stochastiques (CCGs). Ces quatre classes de problèmes d'optimisation non linéaire trouvent de nombreuses applications dans divers domaines tels que l'ingénierie, l'informatique, l'économie et la finance. Notre objectif est d'introduire des algorithmes basés sur l'apprentissage profond pour calculer efficacement les solutions optimales de ces problèmes d'optimisation non linéaire.Pour les jeux de bimatrice, nous utilisons des réseaux neuronaux convolutionnels (CNNs) pour calculer les équilibres de Nash. Plus précisément, nous concevons une architecture de CNN où l'entrée est un jeu de bimatrice et la sortie est l'équilibre de Nash prédit pour le jeu. Nous générons un ensemble de jeux de bimatrice suivant une distribution de probabilité donnée et utilisons l'algorithme de Lemke-Howson pour trouver leurs véritables équilibres de Nash, constituant ainsi un ensemble d'entraînement. Le CNN proposé est formé sur cet ensemble de données pour améliorer sa précision. Une fois l'apprentissage terminée, le CNN est capable de prédire les équilibres de Nash pour des jeux de bimatrice inédits. Les résultats expérimentaux démontrent l'efficacité computationnelle exceptionnelle de notre approche basée sur CNN, au détriment de la précision.Pour les NPEs, NCOPs et CCGs, qui sont des problèmes d'optimisation plus complexes, ils ne peuvent pas être directement introduits dans les réseaux neuronaux. Par conséquent, nous avons recours à des outils avancés, à savoir l'optimisation neurodynamique et les réseaux neuronaux informés par la physique (PINNs), pour résoudre ces problèmes. Plus précisément, nous utilisons d'abord une approche neurodynamique pour modéliser un problème d'optimisation non linéaire sous forme de système d'équations différentielles ordinaires (ODEs). Ensuite, nous utilisons un modèle basé sur PINN pour résoudre le système d'ODE résultant, où l'état final du modèle représente la solution prédite au problème d'optimisation initial. Le réseau neuronal est formé pour résoudre le système d'ODE, résolvant ainsi le problème d'optimisation initial. Une contribution clé de notre méthode proposée réside dans la transformation d'un problème d'optimisation non linéaire en un problème d'entraînement de réseau neuronal. En conséquence, nous pouvons maintenant résoudre des problèmes d'optimisation non linéaire en utilisant uniquement PyTorch, sans compter sur des solveurs d'optimisation convexe classiques tels que CVXPY, CPLEX ou Gurobi

    Résolution de quelques problèmes d'optimisation non linéaire avec l'apprentissage profond

    No full text
    This thesis considers four types of nonlinear optimization problems, namely bimatrix games, nonlinear projection equations (NPEs), nonsmooth convex optimization problems (NCOPs), and chance-constrained games (CCGs).These four classes of nonlinear optimization problems find extensive applications in various domains such as engineering, computer science, economics, and finance.We aim to introduce deep learning-based algorithms to efficiently compute the optimal solutions for these nonlinear optimization problems.For bimatrix games, we use Convolutional Neural Networks (CNNs) to compute Nash equilibria.Specifically, we design a CNN architecture where the input is a bimatrix game and the output is the predicted Nash equilibrium for the game.We generate a set of bimatrix games by a given probability distribution and use the Lemke-Howson algorithm to find their true Nash equilibria, thereby constructing a training dataset.The proposed CNN is trained on this dataset to improve its accuracy. Upon completion of training, the CNN is capable of predicting Nash equilibria for unseen bimatrix games.Experimental results demonstrate the exceptional computational efficiency of our CNN-based approach, at the cost of sacrificing some accuracy.For NPEs, NCOPs, and CCGs, which are more complex optimization problems, they cannot be directly fed into neural networks.Therefore, we resort to advanced tools, namely neurodynamic optimization and Physics-Informed Neural Networks (PINNs), for solving these problems.Specifically, we first use a neurodynamic approach to model a nonlinear optimization problem as a system of Ordinary Differential Equations (ODEs).Then, we utilize a PINN-based model to solve the resulting ODE system, where the end state of the model represents the predicted solution to the original optimization problem.The neural network is trained toward solving the ODE system, thereby solving the original optimization problem.A key contribution of our proposed method lies in transforming a nonlinear optimization problem into a neural network training problem.As a result, we can now solve nonlinear optimization problems using only PyTorch, without relying on classical convex optimization solvers such as CVXPY, CPLEX, or Gurobi.Cette thèse considère quatre types de problèmes d'optimisation non linéaire, à savoir les jeux de bimatrice, les équations de projection non linéaire (NPEs), les problèmes d'optimisation convexe non lisse (NCOPs) et les jeux à contraintes stochastiques (CCGs). Ces quatre classes de problèmes d'optimisation non linéaire trouvent de nombreuses applications dans divers domaines tels que l'ingénierie, l'informatique, l'économie et la finance. Notre objectif est d'introduire des algorithmes basés sur l'apprentissage profond pour calculer efficacement les solutions optimales de ces problèmes d'optimisation non linéaire.Pour les jeux de bimatrice, nous utilisons des réseaux neuronaux convolutionnels (CNNs) pour calculer les équilibres de Nash. Plus précisément, nous concevons une architecture de CNN où l'entrée est un jeu de bimatrice et la sortie est l'équilibre de Nash prédit pour le jeu. Nous générons un ensemble de jeux de bimatrice suivant une distribution de probabilité donnée et utilisons l'algorithme de Lemke-Howson pour trouver leurs véritables équilibres de Nash, constituant ainsi un ensemble d'entraînement. Le CNN proposé est formé sur cet ensemble de données pour améliorer sa précision. Une fois l'apprentissage terminée, le CNN est capable de prédire les équilibres de Nash pour des jeux de bimatrice inédits. Les résultats expérimentaux démontrent l'efficacité computationnelle exceptionnelle de notre approche basée sur CNN, au détriment de la précision.Pour les NPEs, NCOPs et CCGs, qui sont des problèmes d'optimisation plus complexes, ils ne peuvent pas être directement introduits dans les réseaux neuronaux. Par conséquent, nous avons recours à des outils avancés, à savoir l'optimisation neurodynamique et les réseaux neuronaux informés par la physique (PINNs), pour résoudre ces problèmes. Plus précisément, nous utilisons d'abord une approche neurodynamique pour modéliser un problème d'optimisation non linéaire sous forme de système d'équations différentielles ordinaires (ODEs). Ensuite, nous utilisons un modèle basé sur PINN pour résoudre le système d'ODE résultant, où l'état final du modèle représente la solution prédite au problème d'optimisation initial. Le réseau neuronal est formé pour résoudre le système d'ODE, résolvant ainsi le problème d'optimisation initial. Une contribution clé de notre méthode proposée réside dans la transformation d'un problème d'optimisation non linéaire en un problème d'entraînement de réseau neuronal. En conséquence, nous pouvons maintenant résoudre des problèmes d'optimisation non linéaire en utilisant uniquement PyTorch, sans compter sur des solveurs d'optimisation convexe classiques tels que CVXPY, CPLEX ou Gurobi
    corecore