2,032 research outputs found
The efficiency coefficient of the rat heart and muscular system after physical training and hypokinesia
The efficiency of an isolated heart did not change after prolonged physical training of rats for an extreme load. The increase in oxygen consumption by the entire organism in 'uphill' running as compared to the resting level in the trained rats was 14% lower than in the control animals. Prolonged hypokinesia of the rats did not elicit a change in the efficiency of the isolated heart
Triaxial deformation in 10Be
The triaxial deformation in Be is investigated using a microscopic
model. The states of two valence neutrons are classified
based on the molecular-orbit (MO) model, and the -orbit is introduced
about the axis connecting the two -clusters for the description of the
rotational bands. There appear two rotational bands comprised mainly of and , respectively, at low excitation energy, where the two
valence neutrons occupy or orbits. The
triaxiality and the -mixing are discussed in connection to the molecular
structure, particularly, to the spin-orbit splitting. The extent of the
triaxial deformation is evaluated in terms of the electro-magnetic transition
matrix elements (Davydov-Filippov model, Q-invariant model), and density
distribution in the intrinsic frame. The obtained values turned out to be
.Comment: 15 pages, latex, 3 figure
Observation of built-in electric field in InP self-assembled quantum dot systems
Strong Franz–Keldysh oscillations were observed in the nonlinear reflection spectra ofheterostructures with InP self-assembled quantum dots. These oscillations manifest a built-inelectric field of about 30 kV/cm. We propose that this field originates from electric charge capturedby the intrinsic defects on the dot interface. The presence of acceptor-like intrinsic defect states isfound to be a general feature of the InP/InGaP interface but was not observed in other structureswith quantum dots such as InAs/GaAs
Stabilization of high-order solutions of the cubic Nonlinear Schrodinger Equation
In this paper we consider the stabilization of non-fundamental unstable
stationary solutions of the cubic nonlinear Schrodinger equation. Specifically
we study the stabilization of radially symmetric solutions with nodes and
asymmetric complex stationary solutions. For the first ones we find partial
stabilization similar to that recently found for vortex solutions while for the
later ones stabilization does not seem possible
Nonlinearity-induced conformational instability and dynamics of biopolymers
We propose a simple phenomenological model for describing the conformational
dynamics of biopolymers via the nonlinearity-induced buckling and collapse
(i.e. coiling up) instabilities. Taking into account the coupling between the
internal and mechanical degrees of freedom of a semiflexible biopolymer chain,
we show that self-trapped internal excitations (such as amide-I vibrations in
proteins, base-pair vibrations in DNA, or polarons in proteins) may produce the
buckling and collapse instabilities of an initially straight chain. These
instabilities remain latent in a straight infinitely long chain, because the
bending of such a chain would require an infinite energy. However, they
manifest themselves as soon as we consider more realistic cases and take into
account a finite length of the chain. In this case the nonlinear localized
modes may act as drivers giving impetus to the conformational dynamics of
biopolymers. The buckling instability is responsible, in particular, for the
large-amplitude localized bending waves which accompany the nonlinear modes
propagating along the chain. In the case of the collapse instability, the chain
folds into a compact three-dimensional coil. The viscous damping of the aqueous
environment only slows down the folding of the chain, but does not stop it even
for a large damping. We find that these effects are only weakly affected by the
peculiarities of the interaction potentials, and thus they should be generic
for different models of semiflexible chains carrying nonlinear localized
excitations.Comment: 4 pages (RevTeX) with 5 figures (EPS
Triaxial projected shell model approach
The projected shell model analysis is carried out using the triaxial
Nilsson+BCS basis. It is demonstrated that, for an accurate description of the
moments of inertia in the transitional region, it is necessary to take the
triaxiality into account and perform the three-dimensional angular-momentum
projection from the triaxial Nilsson+BCS intrinsic wavefunction.Comment: 9 pages, 2 figure
Structure and Stability of Two-Dimensional Complexes of C_20 Fullerenes
Two-dimensional complexes of C_20 fullerenes connected to each other by
covalent bonds have been studied. Several isomers with different types of
intercluster bonds have been revealed. The lifetimes of the (C_20)_MxM systems
with M = 2 and 3 have been directly calculated at T = 1800 - 3300 K making use
of molecular dynamics. It has been shown that these complexes lose their
periodic cluster structure due to either coalescence of two fullerenes C_20 or
decay of C_20 fullerenes. The activation energies of these processes exceed 2
eV.Comment: 17 pages, 5 figure
- …
