749 research outputs found

    A search for L dwarf binary systems

    Get PDF
    We present analysis of HST Planetary Camera images of twenty L dwarfs identified in the course of the Two Micron All-Sky Survey. Four of the targets have faint, red companions at separations between 0.07 and 0.29 arcseconds (1.6 to 7.6 AU). In three cases, the bolometric magnitudes of the components differ by less than 0.3 magnitudes. Since the cooling rate for brown dwarfs is a strong function of mass, similarity in luminosities implies comparable masses. The faint component in the 2M0850 system, however, is over 1.3 magnitudes fainter than the primary in the I-band, and ~0.8 magnitudes fainter in M(bol). Indeed, 2M0850B is ~0.8 magnitudes fainter in I than the lowest luminosity L dwarf currently known, while the absolute magnitude we deduce at J is almost identical with M_J for Gl 229B. Theoretical models indicate a mass ratio of \~0.75. The mean separation of the L dwarf binaries in the current sample is smaller by a factor of two than amongst M dwarfs. We discuss the implications of these results for the temperature scale in the L/T transition region and for the binary frequency amongst L dwarfs.Comment: 38 pages, 11 figures; accepted for A

    Three Wide-Separation L dwarf Companions from the Two Micron All Sky Survey: Gl 337C, Gl 618.1B, and HD 89744B

    Get PDF
    We present two confirmed wide separation L-dwarf common proper motion companions to nearby stars and one candidate identified from the Two Micron All Sky Survey. Spectral types from optical spectroscopy are L0 V, L2.5 V, and L8 V. Near-infrared low resolution spectra of the companions are provided as well as a grid of known objects spanning M6 V -- T dwarfs to support spectral type assignment for these and future L-dwarfs in the z'JHK bands. Using published measurements, we estimate ages of the companions from physical properties of the primaries. These crude ages allow us to estimate companion masses using theoretical low-mass star and brown dwarf evolutionary models. The new L-dwarfs in this paper bring the number of known wide-binary (Separation >= 100 AU) L-dwarf companions of nearby stars to nine. One of the L-dwarfs is a wide separation companion to the F7 IV-V + extrasolar planet system HD89744Ab.Comment: 20 pages including 6 tables and 4 figures, AJ, in pres

    The Spectra of T Dwarfs I: Near-Infrared Data and Spectral Classification

    Get PDF
    We present near-infrared spectra for a sample of T dwarfs, including eleven new discoveries made using the Two Micron All Sky Survey. These objects are distinguished from warmer (L-type) brown dwarfs by the presence of methane absorption bands in the 1--2.5 \micron spectral region. A first attempt at a near-infrared classification scheme for T dwarfs is made, based on the strengths of CH4_4 and H2_2O bands and the shapes of the 1.25, 1.6, and 2.1 \micron flux peaks. Subtypes T1 V through T8 V are defined, and spectral indices useful for classification are presented. The subclasses appear to follow a decreasing Teff_{eff} scale, based on the evolution of CH4_4 and H2_2O bands and the properties of L and T dwarfs with known distances. However, we speculate that this scale is not linear with spectral type for cool dwarfs, due to the settling of dust layers below the photosphere and subsequent rapid evolution of spectral morphology around Teff_{eff} \sim 1300--1500 K. Similarities in near-infrared colors and continuity of spectral features suggest that the gap between the latest L dwarfs and earliest T dwarfs has been nearly bridged. This argument is strengthened by the possible role of CH4_4 as a minor absorber shaping the K-band spectra of the latest L dwarfs. Finally, we discuss one peculiar T dwarf, 2MASS 0937+2931, which has very blue near-infrared colors (J-Ks_s = 0.89±-0.89\pm0.24) due to suppression of the 2.1 \micron peak. The feature is likely caused by enhanced collision-induced H2_2 absorption in a high pressure or low metallicity photosphere.Comment: 74 pages including 26 figures, accepted by ApJ v563 December 2001; full paper including all of Table 3 may be downloaded from http://www.gps.caltech.edu/~pa/adam/classification ;also see submission 010844

    Acceptability and feasibility of peer assisted supervision and support for intervention practitioners: a Q-methodology evaluation

    Get PDF
    Evidence-based interventions often include quality improvement methods to support fidelity and improve client outcomes. Clinical supervision is promoted as an effective way of developing practitioner confidence and competence in delivery; however, supervision is often inconsistent and embedded in hierarchical line management structures that may limit the opportunity for reflective learning. The Peer Assisted Supervision and Support (PASS) supervision model uses peer relationships to promote the self-regulatory capacity of practitioners to improve intervention delivery. The aim of the present study was to assess the acceptability and feasibility of PASS amongst parenting intervention practitioners. A Q-methodology approach was used to generate data and 30 practitioners volunteered to participate in the study. Data were analyzed and interpreted using standard Q-methodology procedures and by-person factor analysis yielded three factors. There was consensus that PASS was acceptable. Participants shared the view that PASS facilitated an environment of support where negative aspects of interpersonal relationships that might develop in supervision were not evident. Two factors represented the viewpoint that PASS was also a feasible model of supervision. However, the third factor was comprised of practitioners who reported that PASS could be time consuming and difficult to fit into existing work demands. There were differences across the three factors in the extent to which practitioners considered PASS impacted on their intervention delivery. The findings highlight the importance of organizational mechanisms that support practitioner engagement in supervision

    The 2MASS Wide-Field T Dwarf Search. I. Discovery of a Bright T Dwarf Within 10 pc of the Sun

    Get PDF
    We present the discovery of a bright (J = 13.94±\pm0.03) T dwarf, 2MASS 1503+2525, identified in a new, wide-field search for T dwarfs using the recently completed Two Micron All Sky Survey (2MASS). The 1--2.5 \micron spectrum of this object exhibits the strong H2_2O and CH4_4 bands characteristic of mid- and late-type T dwarfs, and we derive a spectral type of T5.5 using both the Burgasser et al. and the Geballe et al. classification schemes. Based on its spectral type and the absolute magnitudes of known T dwarfs, we estimate the distance of this object as 8±\pm3 pc if it is single, likely within 10 pc of the Sun. Our new 2MASS search, which covers 74% of the sky and greatly expands on earlier color constraints, should identify 15--25 new T dwarfs with J \leq 16. Combined with the 20 known members of this class that already fall within our search criteria, our new sample will provide improved statistics for such key quantities as the binary fraction and the field substellar mass function. Furthermore, multiple detections from overlapping 2MASS scans provide multiple epoch astrometry and photometry, and we present proper motions for five T dwarfs in our sample.Comment: accepted for publication to AJ February 2003; 10 pages including 4 figures, uses emulateapj5 packag

    Discovery of the Coolest Extreme Subdwarf

    Full text link
    We report the discovery of LEHPM 2-59 as the coolest extreme M subdwarf (esdM) found to date. Optical and near infrared spectroscopy demonstrate that this source is of later spectral type than the esdM7 APMPM 0559-2903, with the presence of strong alkali lines (including Rb I), VO absorption at 7400 A and H2O absorption at 1.4 microns. Current optical classification schemes yield a spectral type of esdM8, making LEHPM 2-59 one of only two ultracool esdMs known. The substantial space velocity of this object (V_galactic ~ -180 km/s) identifies it as a halo star. Spectral model fits to the optical and near infrared spectral data for this and four other late-type esdMs indicate that LEHPM 2-59 is the coolest esdM currently known, with Teff = 2800-3000 K and -1.5 <~ [M/H] <~ -2.0. Comparison of Teff determinations for M dwarfs and esdMs based on spectral model fits from this study and the literature demonstrate a divergence in Teff scales beyond spectral types M5/esdM5, as large as 600-800 K by types M8/esdM8. While this divergence is likely an artifact of the underlying classification scheme, it may lead to systematic errors in the derived properties of intermediate metallicity subdwarfs. We comment on the future of ultracool subdwarf classification, and suggest several ideas for addressing shortcomings in current (largely extrapolated) schemes.Comment: 19 pages, 7 figures, accepted for publication in ApJ; Figure 1 is available as a JPEG file at http://arxiv.org/PS_cache/astro-ph/ps/0603/0603382.f1.jp

    The First Definitive Binary Orbit Determined with the Hubble Space Telescope Fine Guidance Sensors: Wolf 1062 (Gliese 748)

    Get PDF
    The M dwarf binary, Wolf 1062 (Gliese 748), has been observed with the Hubble Space Telescope (HST) Fine Guidance Sensor 3 in the transfer function scan mode to determine the apparent orbit. This is the first orbit defined fully and exclusively with HST, and is the most accurate definitive orbit for any resolved, noneclipsing system. The orbital period is 2.4490 ± 0.0119 yr and the semimajor axis is 01470 ± 00007—both quantities are now known to better than 1%. Using the weighted mean of seven parallax measurements and these HST data, we find the system mass to be 0.543 ± 0.031 M⊙, where the error of 6% is due almost entirely to the parallax error. An estimated fractional mass from the infrared brightness ratio and infrared mass-luminosity relation yields a mass for the primary of 0.37 M⊙, and the secondary falls in the regime of very low mass stars, with a mass of only 0.17 M⊙
    corecore