316 research outputs found

    Immediate pre-meal water ingestion decreases voluntary food intake in lean young males

    Get PDF
    Purpose: Consuming 375-500 ml of water 30 min before a meal has been shown to reduce energy intake in older, but not younger adults. This study investigated the effects of ingesting a water preload immediately pre-meal (<1 min before eating) on within-meal ad-libitum energy intake in non-obese young males. Methods: Fourteen healthy males (mean (SD) age 27 (3) y, Height 1.83 (0.05) m, body weight 80.47 (9.89) kg, body fat 17.5 (4.0) %, body mass index 24.0 (2.5) kg/m2) completed a familiarisation trial and two experimental trials in randomised counterbalanced order. Subjects arrived at the laboratory overnight fasted and consumed an ad-libitum porridge breakfast. Immediately prior to the meal, subjects consumed either a 568 ml (1 pint) water preload (preload trial) or no preload (control trial). Visual analogue scale questionnaires to assess hunger, fullness and satisfaction were completed before and after the meal in both trials, as well as after the water preload. Results: Ad-libitum energy intake was greater (P<0.001) during control (2551 (562) kJ) than preload (1967 (454) kJ). Ad-libitum water intake was also greater (P<0.001) during control (318 (226-975) ml) than preload (116 (0-581) ml). The water preload increased fullness and satisfaction and decreased hunger compared to pre-trial (P<0.001) and the control trial (P<0.001). Conclusion: This study demonstrates that consumption of a 568 ml water preload immediately before a meal reduces energy intake in non-obese young males. This might therefore be an effective strategy to suppress energy intake in this population and possibly assist with weight management

    Large Scale Searches for Brown Dwarfs and Free-Floating Planets

    Full text link
    Searches of large scale surveys have resulted in the discovery of over 1000 brown dwarfs in the Solar neighbourhood. In this chapter we review the progress in finding brown dwarfs in large datasets, highlighting the key science goals, and summarising the surveys that have contributed most significantly to the current sample.Comment: Accepted to appear in the Handbook of Exoplanets (Springer); Editors: Hans J. Deeg & Juan Antonio Belmont

    Estimates of Particulate Organic Carbon Flowing from the Pelagic Environment to the Benthos through Sponge Assemblages

    Get PDF
    Despite the importance of trophic interactions between organisms, and the relationship between primary production and benthic diversity, there have been few studies that have quantified the carbon flow from pelagic to benthic environments as a result of the assemblage level activity of suspension-feeding organisms. In this study, we examine the feeding activity of seven common sponge species from the Taputeranga marine reserve on the south coast of Wellington in New Zealand. We analysed the diet composition, feeding efficiency, pumping rates, and the number of food particles (specifically picoplanktonic prokaryotic cells) retained by sponges. We used this information, combined with abundance estimates of the sponges and estimations of the total amount of food available to sponges in a known volume of water (89,821 m3), to estimate: (1) particulate organic carbon (POC) fluxes through sponges as a result of their suspension-feeding activities on picoplankton; and (2) the proportion of the available POC from picoplankton that sponges consume. The most POC acquired by the sponges was from non-photosynthetic bacterial cells (ranging from 0.09 to 4.69 g C dβˆ’1 with varying sponge percentage cover from 0.5 to 5%), followed by Prochlorococcus (0.07 to 3.47 g C dβˆ’1) and then Synechococcus (0.05 to 2.34 g C dβˆ’1) cells. Depending on sponge abundance, the amount of POC that sponges consumed as a proportion of the total POC available was 0.2–12.1% for Bac, 0.4–21.3% for Prochlo, and 0.3–15.8% for Synecho. The flux of POC for the whole sponge assemblage, based on the consumption of prokaryotic picoplankton, ranged from 0.07–3.50 g C m2 dβˆ’1. This study is the first to estimate the contribution of a sponge assemblage (rather than focusing on individual sponge species) to POC flow from three groups of picoplankton in a temperate rocky reef through the feeding activity of sponges and demonstrates the importance of sponges to energy flow in rocky reef environments

    Morphological and Behavioral Changes in the Pathogenesis of a Novel Mouse Model of Communicating Hydrocephalus

    Get PDF
    The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate
    • …
    corecore