1,980 research outputs found

    Room electromagnetics in an industrial workshop

    Get PDF

    Experimental analysis of dense multipath components in an industrial environment

    Get PDF
    This work presents an analysis of dense multipath components (DMC) in an industrial workshop. Radio channel sounding was performed with a vector network analyzer and virtual antenna arrays. The specular and dense multipath components were estimated with the RiMAX algorithm. The DMC covariance structure of the RiMAX data model was validated. Two DMC parameters were studied: the distribution of radio channel power between specular and dense multipath, and the DMC reverberation time. The DMC power accounted for 23% to 70% of the total channel power. A significant difference between DMC powers in line-of-sight and nonline-of-sight was observed, which can be largely attributed to the power of the line-of-sight multipath component. In agreement with room electromagnetics theory, the DMC reverberation time was found to be nearly constant. Overall, DMC in the industrial workshop is more important than in office environments: it occupies a fraction of the total channel power that is 4% to 13% larger. The industrial environment absorbs on average 29% of the electromagnetic energy compared to 45%-51% for office environments in literature: this results in a larger reverberation time in the former environment. These findings are explained by the highly cluttered and metallic nature of the workshop

    Shape optimization of tibial prosthesis components

    Get PDF
    NASA technology and optimal design methodologies originally developed for the optimization of composite structures (engine blades) are adapted and applied to the optimization of orthopaedic knee implants. A method is developed enabling the shape tailoring of the tibial components of a total knee replacement implant for optimal interaction within the environment of the tibia. The shape of the implant components are optimized such that the stresses in the bone are favorably controlled to minimize bone degradation, to improve the mechanical integrity of the implant/interface/bone system, and to prevent failures of the implant components. A pilot tailoring system is developed and the feasibility of the concept is demonstrated and evaluated. The methodology and evolution of the existing aerospace technology from which this pilot optimization code was developed is also presented and discussed. Both symmetric and unsymmetric in-plane loading conditions are investigated. The results of the optimization process indicate a trend toward wider and tapered posts as well as thicker backing trays. Unique component geometries were obtained for the different load cases

    Experimental study of depolarization and antenna correlation in tunnels in the 1.3 GHz band

    Get PDF
    Measurements have been carried out in a low-traffic road tunnel to investigate the influence of the polarization of the transmitting and receiving antennas on the channel characteristics. A real-time channel sounder working in a frequency band around 1.3 GHz has been used, the elements of the transmitting and receiving arrays being dual-polarized patch antennas. Special emphasis is made on cross-polarization discrimination factor and on the spatial correlation between array elements which has a great influence on the performances of transmit/receive diversity schemes. Various polarizations both at the transmitter and the receiver have been tested to minimize this spatial correlation while keeping the size of the array as small as possible

    Polarization properties of specular and dense multipath components in a large industrial hall

    Get PDF
    This paper presents an analysis of the polarization characteristics of specular and dense multipath components (SMC & DMC) in a large industrial hall based on frequency-domain channel sounding experiments at 1.3 GHz with 22 MHz bandwidth. The RiMAX maximum-likelihood estimator is used to extract the full polarimetric SMC and DMC from the measurement data by taking into account the polarimetric radiating patterns of the dual-polarized antennas. Cross-polar discrimination (XPD) values are presented for the measured channels and for the SMC and DMC separately

    An improved sampling tube for in-duct fan sound measurement

    Get PDF
    A number of researchers have shown that the currently available commercial sampling tube (microphone turbulence screen) suffers from excessive self-noise, poor turbulence rejection and non-smooth frequency response. This paper describes the development of an improved sampling tube by Baade. In particular, it discusses the difficulties encountered by Halvarsson and Davy when measuring the pure tone frequency response of sampling tubes in an anechoic room. This research is still in progress, but results to date are presented. It is planned that the design resulting from this research will be included in ASHRAE Standard 68 and ISO 5136

    Impact of polarization diversity in massive MIMO for industry 4.0

    Get PDF
    The massive polarimetric radio channel is evaluated in an indoor industrial scenario at 3.5 GHz using a 10×10 uniform rectangular array (URA). The analysis is based on (1) propagation characteristics like the average received gain and the power to interference ratio from the Gram matrix and (2) system-oriented metrics such as sum-rate capacity with maximum-ratio transmitter (MRT). The results clearly show the impact of polarization diversity in an industrial scenario and how it can considerably improve different aspects of the system design. Results for sum-rate capacity are promising and show that the extra degree of freedom, provided by polarization diversity, can optimize the performance of a very simple precoder, the MRT

    Channel correlation-based approach for feedback overhead reduction in massive MIMO

    Get PDF
    For frequency-division duplex multiple-input-multiple-output (MIMO) systems, the channel state information at the transmitter is usually obtained by sending pilots or reference signals from all elements of the antenna array. The channel is then estimated by the receiver and communicated back to the transmitter. However, for massive MIMO, this periodical estimation of the full transfer matrix can lead to prohibitive overhead. To reduce the amount of data, we propose to estimate the updated channel matrix from the knowledge of the full correlation matrix at the transmitter made during some initialization time and the instantaneous measured channel matrix of smaller size, characterizing the link between the user and a limited number of reference array elements. The proposed algorithm is validated with measured massive MIMO channel transfer functions at 3.5GHz between a 9×99 \times 9 uniform rectangular array and different user positions. Since measurements were made in static conditions, the criteria chosen for evaluating the performance of the algorithm are based on a comparison of the predicted channel capacity calculated from either the measured or estimated channel matrix
    • …
    corecore