12 research outputs found

    Portable Bacterial Identification System Based on Elastic Light Scatter Patterns

    Get PDF
    Background Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. Results This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Conclusions Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%

    A Synergistic Antiproliferation Effect of Curcumin and Docosahexaenoic Acid in SK-BR-3 Breast Cancer Cells: Unique Signaling Not Explained by the Effects of Either Compound Alone.

    Get PDF
    Background Breast cancer is a collection of diseases in which molecular phenotypes can act as both indicators and mediators of therapeutic strategy. Therefore, candidate therapeutics must be assessed in the context of multiple cell lines with known molecular phenotypes. Docosahexaenoic acid (DHA) and curcumin (CCM) are dietary compounds known to antagonize breast cancer cell proliferation. We report that these compounds in combination exert a variable antiproliferative effect across multiple breast cell lines, which is synergistic in SK-BR-3 cells and triggers cell signaling events not predicted by the activity of either compound alone. Methods Dose response curves for CCM and DHA were generated for five breast cell lines. Effects of the DHA+ CCM combination on cell proliferation were evaluated using varying concentrations, at a fixed ratio, of CCM and DHA based on their individual ED50. Detection of synergy was performed using nonlinear regression of a sigmoid dose response model and Combination Index approaches. Cell molecular network responses were investigated through whole genome microarray analysis of transcript level changes. Gene expression results were validated by RT-PCR, and western blot analysis was performed for potential signaling mediators. Cellular curcumin uptake, with and without DHA, was analyzed via flow cytometry and HPLC. Results CCM+DHA had an antiproliferative effect in SK-BR-3, MDA-MB-231, MDA-MB-361, MCF7 and MCF10AT cells. The effect was synergistic for SK-BR-3 (ER- PR- Her2+) relative to the two compounds individually. A whole genome microarray approach was used to investigate changes in gene expression for the synergistic effects of CCM+DHA in SK-BR-3 cells lines. CCM+DHA triggered transcript-level responses, in disease-relevant functional categories, that were largely non-overlapping with changes caused by CCM or DHA individually. Genes involved in cell cycle arrest, apoptosis, inhibition of metastasis, and cell adhesion were upregulated, whereas genes involved in cancer development and progression, metastasis, and cell cycle progression were downregulated. Cellular pools of PPARÎł and phospho-p53 were increased by CCM+DHA relative to either compound alone. DHA enhanced cellular uptake of CCM in SK-BR-3 cells without significantly enhancing CCM uptake in other cell lines. Conclusions The combination of DHA and CCM is potentially a dietary supplemental treatment for some breast cancers, likely dependent upon molecular phenotype. DHA enhancement of cellular curcumin uptake is one potential mechanism for observed synergy in SK-BR-3 cells; however, transcriptomic data show that the antiproliferation synergy accompanies many signaling events unique to the combined presence of the two compounds

    Differential Mitochondrial Toxicity Screening and Multi- Parametric Data Analysis

    Get PDF
    Early evaluation of new drug entities for their potential to cause mitochondrial dysfunction is becoming an important task for drug development. Multi-parametric high-content screening (mp-HCS) of mitochondrial toxicity holds promise as a lead in-vitro strategy for drug testing and safety evaluations. In this study, we have developed a mp-HCS and multi-parametric data analysis scheme for assessing cell responses to induced mitochondrial perturbation. The mp-HCS measurements are shown to be robust enough to allow for quantitative comparison of biological systems with different metabolic pathways simulated by alteration of growth media. Substitution of medium glucose for galactose sensitized cells to drug action and revealed novel response parameters. Each compound was quantitatively characterized according to induced phenotypic changes of cell morphology and functionality measured by fluorescent biomarkers for mitochondrial activity, plasma membrane permeability, and nuclear morphology. Descriptors of drug effects were established by generation of a SCRIT (Specialized-Cell-Response-to-Induced-Toxicity) vector, consisting of normalized statistical measures of each parameter at each dose and growth condition. The dimensionality of SCRIT vectors depends on the number of parameters chosen, which in turn depends on the hypothesis being tested. Specifically, incorporation of three parameters of response into SCRIT vectors enabled clustering of 84 training compounds with known pharmacological and toxicological activities according to the degree of toxicity and mitochondrial involvement. Inclusion of 6 parameters enabled the resolution of more subtle differences between compounds within a common therapeutic class; scoring enabled a ranking of statins in direct agreement with clinical outcomes. Comparison of drug-induced changes required variations in glucose for separation of mitochondrial dysfunction from other types of cytotoxicity. These results also demonstrate that the number of drugs in a training set, the choice of parameters used in analysis, and statistical measures are fundamental for specific hypothesis testing and assessment of quantitative phenotypic differences

    Multimeric Rhodamine Dye-Induced Aggregation of Silver Nanoparticles for Surface-Enhanced Raman Scattering

    No full text
    Isotopic variants of Rhodamine 6G (R6G) have previously been used as a method of multiplexed detection for Surface Enhanced Raman Spectroscopy (SERS), including protein detection and quantification. Challenges exist, however, with producing long-term stable SERS signals with exposure to silver or gold metal surfaces without the use of additional protective coatings of nanomaterials. Here, novel rhodamine “dimers” and “trimers” have been created that demonstrate a higher avidity for metal nanoparticles and induce aggregation to create plasmonic “hotspots” as indicated by enhanced Raman scattering in situ. These aggregates can be formed in a colloid, on surfaces, or membrane substrates such as poly­(vinylidene fluoride) for applications in biosciences. The integrity of the materials and Raman signals are maintained for months of time on different substrates. These dye materials should provide avenues for simplified in situ generation of sensors for Raman-based assays especially in settings requiring highly robust performance

    Discovery of Inhibitors for Proliferating Cell Nuclear Antigen Using a Computational-Based Linked-Multiple-Fragment Screen

    No full text
    Proliferating cell nuclear antigen (PCNA) is a central factor in DNA replication and repair pathways that plays an essential role in genome stability. The functional roles of PCNA are mediated through an extensive list of protein-protein interactions, each of which transmits specific information in protein assemblies. The flexibility at the PCNA-protein interaction interfaces offers opportunities for the discovery of functionally selective inhibitors of DNA repair pathways. Current fragment-based drug design methodologies can be limited by the flexibility of protein interfaces. These factors motivated an approach to defining compounds that could leverage previously identified subpockets on PCNA that are suitable for fragment-binding sites. Methodologies for screening multiple connected fragment-binding events in distinct subpockets are deployed to improve the selection of fragment combinations. A flexible backbone based on; N; -alkyl-glycine amides offers a scaffold to combinatorically link multiple fragments for in silico screening libraries that explore the diversity of subpockets at protein interfaces. This approach was applied to discover new potential inhibitors of DNA replication and repair that target PCNA in a multiprotein recognition site. The screens of the libraries were designed to computationally filter ligands based upon the fragments and positions to <1%, which were synthesized and tested for direct binding to PCNA. Molecular dynamics simulations also revealed distinct features of these novel molecules that block key PCNA-protein interactions. Furthermore, a Bayesian classifier predicted 15 of the 16 new inhibitors to be modulators of protein-protein interactions, demonstrating the method's utility as an effective screening filter. The cellular activities of example ligands with similar affinity for PCNA demonstrate unique properties for novel selective synergy with therapeutic DNA-damaging agents in drug-resistant contexts
    corecore