3,675 research outputs found

    Gauss Sums and Quantum Mechanics

    Full text link
    By adapting Feynman's sum over paths method to a quantum mechanical system whose phase space is a torus, a new proof of the Landsberg-Schaar identity for quadratic Gauss sums is given. In contrast to existing non-elementary proofs, which use infinite sums and a limiting process or contour integration, only finite sums are involved. The toroidal nature of the classical phase space leads to discrete position and momentum, and hence discrete time. The corresponding `path integrals' are finite sums whose normalisations are derived and which are shown to intertwine cyclicity and discreteness to give a finite version of Kelvin's method of images.Comment: 14 pages, LaTe

    The Zel'dovich effect and evolution of atomic Rydberg spectra along the Periodic Table

    Full text link
    In 1959 Ya. B. Zel'dovich predicted that the bound-state spectrum of the non-relativistic Coulomb problem distorted at small distances by a short-range potential undergoes a peculiar reconstruction whenever this potential alone supports a low-energy scattering resonance. However documented experimental evidence of this effect has been lacking. Previous theoretical studies of this phenomenon were confined to the regime where the range of the short-ranged potential is much smaller than Bohr's radius of the Coulomb field. We go beyond this limitation by restricting ourselves to highly-excited s states. This allows us to demonstrate that along the Periodic Table of elements the Zel'dovich effect manifests itself as systematic periodic variation of the Rydberg spectra with a period proportional to the cubic root of the atomic number. This dependence, which is supported by analysis of experimental and numerical data, has its origin in the binding properties of the ionic core of the atom.Comment: 17 pages, 12 figure

    Interface states in junctions of two semiconductors with intersecting dispersion curves

    Full text link
    A novel type of shallow interface state in junctions of two semiconductors without band inversion is identified within the envelope function approximation, using the two-band model. It occurs in abrupt junctions when the interband velocity matrix elements of the two semiconductors differ and the bulk dispersion curves intersect. The in-plane dispersion of the interface state is found to be confined to a finite range of momenta centered around the point of intersection. These states turn out to exist also in graded junctions, with essentially the same properties as in the abrupt case.Comment: 1 figur

    Excitation of propagating spin waves with global uniform microwave fields

    Get PDF
    Copyright © 2011 American Institute of PhysicsWe demonstrate a magnonic architecture that converts global free-space uniform microwaves into spin waves propagating in a stripe magnonic waveguide. The architecture is based upon dispersion mismatch between the narrow magnonic waveguide and a wide "antenna" patch, both patterned from the same magnetic film. The spin waves injected into the waveguide travel to distances as large as several tens of micrometers. The antennas can be placed at multiple positions on a magnonic chip and used to excite mutually coherent multiple spin waves for magnonic logic operations. This demonstration paves way for "magnonics" to become a pervasive technology for information processing

    Enhancement of spontaneous and stimulated emission of a rhodamine 6G dye by an Ag aggregate

    Get PDF
    We have demonstrated that by adding the solution of aggregated silver nanoparticles to the solution of rhodamine 6G dye, one can enhance the efficiency of spontaneous and stimulated emission. We attribute an increase of the spontaneous emission intensity of dye to the increase of the absorption efficiency caused by the field enhancements in metallic nanostructures associated with surface plasmons. The enhancement of the stimulated emission of dye, which has the same nature as the enhancement of absorption, was observed in the pump-probe and laser experiments

    Tight-binding study of interface states in semiconductor heterojunctions

    Full text link
    Localized interface states in abrupt semiconductor heterojunctions are studied within a tight-binding model. The intention is to provide a microscopic foundation for the results of similar studies which were based upon the two-band model within the envelope function approximation. In a two-dimensional description, the tight-binding Hamiltonian is constructed such that the Dirac-like bulk spectrum of the two-band model is recovered in the continuum limit. Localized states in heterojunctions are shown to occur under conditions equivalent to those of the two-band model. In particular, shallow interface states are identified in non-inverted junctions with intersecting bulk dispersion curves. As a specific example, the GaSb-AlSb heterojunction is considered. The matching conditions of the envelope function approximation are analyzed within the tight-binding description.Comment: RevTeX, 11 pages, 3 figures, to appear in Phys. Rev.

    Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    No full text
    International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada-US border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)

    Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    No full text
    International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada?U.S. border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)

    Edge electron states for quasi-one-dimensional organic conductors in the magnetic-field-induced spin-density-wave phases

    Full text link
    We develop a microscopic picture of the electron states localized at the edges perpendicular to the chains in the Bechgaard salts in the quantum Hall regime. In a magnetic-field-induced spin-density-wave state (FISDW) characterized by an integer N, there exist N branches of chiral gapless edge excitations. Localization length is much longer and velocity much lower for these states than for the edge states parallel to the chains. We calculate the contribution of these states to the specific heat and propose a time-of-flight experiment to probe the propagating edge modes directly.Comment: 4 pages, 2 figures. V.2: Minor changes to the final version published in PR
    • …
    corecore