82,544 research outputs found

    Conformal Inflation Coupled to Matter

    Full text link
    We formulate new conformal models of inflation and dark energy which generalise the Higgs-Dilaton scenario. We embed these models in unimodular gravity whose effect is to break scale invariance in the late time Universe. In the early Universe, inflation occurs close to a maximum of both the scalar potential and the scalar coupling to the Ricci scalar in the Jordan frame. At late times, the dilaton, which decouples from the dynamics during inflation, receives a potential term from unimodular gravity and leads to the acceleration of the Universe. We address two central issues in this scenario. First we show that the Damour-Polyalov mechanism, when non-relativistic matter is present prior to the start of inflation, sets the initial conditions for inflation at the maximum of the scalar potential. We then show that conformal invariance implies that matter particles are not coupled to the dilaton in the late Universe at the classical level. When fermions acquire masses at low energy, scale invariance is broken and quantum corrections induce a coupling between the dilaton and matter which is still small enough to evade the gravitational constraints in the solar system.Comment: 24 page

    Enhanced backscatter of optical beams reflected in turbulent air

    Full text link
    Optical beams propagating through air acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Using a combination of lab-scale experiments and simulations, we investigate the EBS of optical beams reflected from corner cubes and rough surfaces, and identify the regimes in which EBS is most distinctly observed.Comment: 10 pages, 8 figure

    Brane-World Cosmology, Bulk Scalars and Perturbations

    Get PDF
    We investigate aspects of cosmology in brane world theories with a bulk scalar field. We concentrate on a recent model motivated from supergravity in singular spaces. After discussing the background evolution of such a brane-world, we present the evolution of the density contrast. We compare our results to those obtained in the (second) Randall-Sundrum scenario and usual 4D scalar-tensor theories.Comment: 29 pages, one figure, JHEP3-styl

    Cosmic Strings, Zero Modes and SUSY breaking in Nonabelian N=1 Gauge Theories

    Get PDF
    We investigate the microphysics of cosmic strings in Nonabelian gauge theories with N=1 supersymmetry. We give the vortex solutions in a specific example and demonstrate that fermionic superconductivity arises because of the couplings and interactions dictated by supersymmetry. We then use supersymmetry transformations to obtain the relevant fermionic zero modes and investigate the role of soft supersymmetry breaking on the existence and properties of the superconducting strings.Comment: 12 pages, RevTex, submitted to Phys. Rev.

    Substantiation data for hypersonic cruise vehicle wing structure evaluation - Volume 1, sections 1-10

    Get PDF
    Trajectory, load, aerodynamic heating, materials, structural, and thermal analyses for hypersonic cruise vehicle wing

    High-precision elements of double-lined spectroscopic binaries from combined interferometry and spectroscopy. Application to the beta Cephei star beta Centauri

    Get PDF
    We present methodology to derive high-precision estimates of the fundamental parameters of double-lined spectroscopic binaries. We apply the methods to the case study of the double-lined beta Cephei star beta Centauri. We also present a detailed analysis of beta Centauri's line-profile variations caused by its oscillations. We point out that a systematic error in the orbital amplitudes, and any quantities derived from them, occurs if the radial velocities of blended component lines are computed without spectral disentangling. This technique is an essential ingredient in the derivation of the physical parameters if the goal is to obtain a precision of only a few percent. We have devised iteration schemes to obtain the orbital elements for systems whose lines are blended throughout the orbital cycle. We find the following parameters for beta Cen: M1=10.7±0.1M⊙M_1=10.7\pm 0.1 M_\odot and M2=10.3±0.1M⊙M_2=10.3\pm 0.1 M_\odot, an age of (14.1±0.6)×106(14.1\pm 0.6)\times 10^6 years. We deduce two oscillation frequencies for the broad-lined primary of beta Centauri with degrees higher than 2. We propose that our iteration schemes be used in any future derivations of the spectroscopic orbital parameters of double-lined binaries with blended component lines to which disentangling can be successfully applied.Comment: 12 pages, 13 figures, accepted for publication in A&
    • …
    corecore