748 research outputs found

    Two Loop Renormalization of Massive (p,q) Supersymmetric Sigma Models

    Full text link
    We calculate the beta-functions of the general massive (p,q) supersymmetric sigma model to two loop order using (1,0) superfields. The conditions for finiteness are discussed in relation to (p,q) supersymmetry. We also calculate the effective potential using component fields to one loop order and consider the possibility of perturbative breaking of supersymmetry. The effect of one loop finite local counter terms and the ultra-violet behaviour of the off-shell (p,q) models to all orders in perturbation theory are also addressed.Comment: 43 pages phyzzx with 5 figure

    Axisymmetric versus Non-axisymmetric Vortices in Spinor Bose-Einstein Condensates

    Full text link
    The structure and stability of various vortices in F=1 spinor Bose-Einstein condensates are investigated by solving the extended Gross-Pitaevskii equation under rotation. We perform an extensive search for stable vortices, considering both axisymmetric and non-axisymmetric vortices and covering a wide range of ferromagnetic and antiferromagnetic interactions. The topological defect called Mermin-Ho (Anderson-Toulouse) vortex is shown to be stable for ferromagnetic case. The phase diagram is established in a plane of external rotation Omega vs total magnetization M by comparing the free energies of possible vortices. It is shown that there are qualitative differences between axisymmetric and non-axisymmetric vortices which are manifested in the Omega- and M-dependences.Comment: 9 pages, 9 figure

    Winding effects on brane/anti-brane pairs

    Full text link
    We study a brane/anti-brane configuration which is separated along a compact direction by constructing a tachyon effective action which takes into account transverse scalars. Such an action is relevant in the study of HQCD model of Sakai and Sugimoto of chiral symmetry breaking, where the size of the compact circle sets the confinement scale. Our approach is motivated by string theory orbifold constructions and gives a route to model inhomogeneous tachyon decay. We illustrate the techniques involved with a relatively simple example of a harmonic oscillator on a circle. We will then repeat the analysis for the Sakai-Sugimoto model and show that by integrating out the winding modes will provide us with a renormalized action with a lower energy than that of truncating to zero winding sector.Comment: 21 pages, 3 figures. v3: discussion and references added, published versio

    Scattered Results in 2D String Theory

    Full text link
    The nonperturbative 1→N1\to N tachyon scattering amplitude in 2D type 0A string theory is computed. The probability that NN particles are produced is a monotonically decreasing function of NN whenever NN is large enough that statistical methods apply. The results are compared with expectations from black hole thermodynamics.Comment: 22 pages, 5 figures, harvmac. v2: minor comments added, typos correcte

    Why social networks are different from other types of networks

    Full text link
    We argue that social networks differ from most other types of networks, including technological and biological networks, in two important ways. First, they have non-trivial clustering or network transitivity, and second, they show positive correlations, also called assortative mixing, between the degrees of adjacent vertices. Social networks are often divided into groups or communities, and it has recently been suggested that this division could account for the observed clustering. We demonstrate that group structure in networks can also account for degree correlations. We show using a simple model that we should expect assortative mixing in such networks whenever there is variation in the sizes of the groups and that the predicted level of assortative mixing compares well with that observed in real-world networks.Comment: 9 pages, 2 figure

    Nonprofit governance: Improving performance in troubled economic times

    Get PDF
    Nonprofit management is currently pressured to perform effectively in a weak economy. Yet, nonprofit governance continues to suffer from unclear conceptions of the division of labor between board of directors and executive directors. This online survey of 114 executive directors aims to provide clarification and recommendations for social administration

    A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints

    Full text link
    We compare higher order gravity models to observational constraints from magnitude-redshift supernova data, distance to the last scattering surface of the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed systematic approach to higher order gravity models based on minimal sets of curvature invariants, and select models that pass some physical acceptability conditions (free of ghost instabilities, real and positive propagation speeds, and free of separatrices). Models that satisfy these physical and observational constraints are found in this analysis and do provide fits to the data that are very close to those of the LCDM concordance model. However, we find that the limitation of the models considered here comes from the presence of superluminal mode propagations for the constrained parameter space of the models.Comment: 12 pages, 6 figure

    Concept of temperature in multi-horizon spacetimes: Analysis of Schwarzschild-De Sitter metric

    Full text link
    In case of spacetimes with single horizon, there exist several well-established procedures for relating the surface gravity of the horizon to a thermodynamic temperature. Such procedures, however, cannot be extended in a straightforward manner when a spacetime has multiple horizons. In particular, it is not clear whether there exists a notion of global temperature characterizing the multi-horizon spacetimes. We examine the conditions under which a global temperature can exist for a spacetime with two horizons using the example of Schwarzschild-De Sitter (SDS) spacetime. We systematically extend different procedures (like the expectation value of stress tensor, response of particle detectors, periodicity in the Euclidean time etc.) for identifying a temperature in the case of spacetimes with single horizon to the SDS spacetime. This analysis is facilitated by using a global coordinate chart which covers the entire SDS manifold. We find that all the procedures lead to a consistent picture characterized by the following features: (a) In general, SDS spacetime behaves like a non-equilibrium system characterized by two temperatures. (b) It is not possible to associate a global temperature with SDS spacetime except when the ratio of the two surface gravities is rational (c) Even when the ratio of the two surface gravities is rational, the thermal nature depends on the coordinate chart used. There exists a global coordinate chart in which there is global equilibrium temperature while there exist other charts in which SDS behaves as though it has two different temperatures. The coordinate dependence of the thermal nature is reminiscent of the flat spacetime in Minkowski and Rindler coordinate charts. The implications are discussed.Comment: 12 page

    Magnetogenesis and the dynamics of internal dimensions

    Full text link
    The dynamical evolution of internal space-like dimensions breaks the invariance of the Maxwell's equations under Weyl rescaling of the (conformally flat) four-dimensional metric. Depending upon the number and upon the dynamics of internal dimensions large scale magnetic fields can be created. The requirements coming from magnetogenesis together with the other cosmological constraints are examined under the assumption that the internal dimensions either grow or shrink (in conformal time) prior to a radiation dominated epoch. If the internal dimensions are growing the magnitude of the generated magnetic fields can seed the galactic dynamo mechanism.Comment: 27 in RevTex style, four figure
    • …
    corecore