1,524 research outputs found

    A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans

    Get PDF
    Molting is required for progression between larval stages in the life cycle of nematodes. We have identified four mutant alleles of a <i>Caenorhabditis elegans</i> metalloprotease gene, <i>nas-37</i>, that cause incomplete ecdysis. At each molt the cuticle fails to open sufficiently at the anterior end and the partially shed cuticle is dragged behind the animal. The gene is expressed in hypodermal cells 4 hours before ecdysis during all larval stages. The <i>NAS-37</i> protein accumulates in the anterior cuticle and is shed in the cuticle after ecdysis. This pattern of protein accumulation places NAS- 37 in the right place and at the right time to degrade the cuticle to facilitate ecdysis. The nas-37 gene has orthologs in other nematode species, including parasitic nematodes, and they undergo a similar shedding process. For example, <i>Haemonchus contortus</i> molts by digesting a ring of cuticle at the tip of the nose. Incubating <i>Haemonchus</i> larvae in extracted exsheathing fluids causes a refractile ring of digested cuticle to form at the tip of the nose. When <i>Haemonchus</i> cuticles are incubated with purified NAS-37, a similar refractile ring forms. NAS-37 degradation of the <i>Haemonchus</i> cuticle suggests that the metalloproteases and the cuticle substrates involved in exsheathment of parasitic nematodes are conserved in free-living nematodes

    Molecular ratchets - verification of the principle of detailed balance

    Full text link
    We argue that the recent experiments of Kelly et. al.(Angew. Chem. Int. Ed. Engl. 36, 1866 (1997)) on molecular ratchets, in addition to being in agreement with the second law of thermodynamics, is a test of the principle of detailed balance for the ratchet. We suggest new experiments, using an asymmetric ratchet, to further test the principle. We also point out methods involving a time variation of the temperature to to give it a directional motion

    Global Strings and the Aharonov-Bohm Effect

    Full text link
    When a fermion interacts with a global vortex or cosmic string a solenoidal "gauge" field is induced. This results in a non-trivial scattering cross-section. For scalars and non-relativistic fermions the cross-section is similar to that of Aharonov and Bohm, but with corrections. A cosmological example is compared to one in liquid He3^{3}-A and important differences are discovered.Comment: 11 pages, DAMTP 93-5

    Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations

    Full text link
    Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible to derive the direction of propagation of coronal mass ejections (CMEs) in addition to their speed with a variety of methods. For CMEs observed by both STEREO spacecraft, it is possible to derive their direction using simultaneous observations from the twin spacecraft and also, using observations from only one spacecraft with fitting methods. This makes it possible to test and compare different analyses techniques. In this article, we propose a new fitting method based on observations from one spacecraft, which we compare to the commonly used fitting method of Sheeley et al. (1999). We also compare the results from these two fitting methods with those from two stereoscopic methods, focusing on 12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009. We find evidence that the fitting method of Sheeley et al. (1999) can result in significant errors in the determination of the CME direction when the CME propagates outside of 60deg \pm 20 deg from the Sun-spacecraft line. We expect our new fitting method to be better adapted to the analysis of halo or limb CMEs with respect to the observing spacecraft. We also find some evidence that direct triangulation in the HI fields-of-view should only be applied to CMEs propagating approximatively towards Earth (\pm 20deg from the Sun-Earth line). Last, we address one of the possible sources of errors of fitting methods: the assumption of radial propagation. Using stereoscopic methods, we find that at least seven of the 12 studied CMEs had an heliospheric deflection of less than 20deg as they propagated in the HI fields-of-view, which, we believe, validates this approximation.Comment: 17 pages, 6 figures, 2 tables, accepted to Solar Physic

    Piégeage et évolution des composés toxiques dans les systèmes de bio-rétention

    Get PDF

    Phylogenetics of Archerfishes (Toxotidae) and Evolution of the Toxotid Shooting Apparatus

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Archerfishes (Toxotidae) are variously found in the fresh- and brackish-water environments of Asia Pacific and are well known for their ability to shoot water at terrestrial prey. These shots of water are intended to strike their prey and cause it to fall into the water for capture and consumption. While this behavior is well known, there are competing hypotheses (blowpipe vs. pressure tank hypothesis) of how archerfishes shoot and which oral structures are involved. Current understanding of archerfish shooting structures is largely based on two species, Toxotes chatareus and T. jaculatrix. We do not know if all archerfishes possess the same oral structures to shoot water, if anatomical variation is present within these oral structures, or how these features have evolved. Additionally, there is little information on the evolution of the Toxotidae as a whole, with all previous systematic works focusing on the interrelationships of the family. We first investigate the limits of archerfish species using new and previously published genetic data. Our analyses highlight that the current taxonomy of archerfishes does not conform to the relationships we recover. Toxotes mekongensis and T. siamensis are placed in the synonymy of T. chatareus, Toxotes carpentariensis is recognized as a species and removed from the synonymy of T. chatareus, and the genus Protoxotes is recognized for T. lorentzi based on the results of our analyses. We then take an integrative approach, using a combined analysis of discrete hard- and soft-tissue morphological characters with genetic data, to construct a phylogeny of the Toxotidae. Using the resulting phylogenetic hypothesis, we then characterize the evolutionary history and anatomical variation within the archerfishes. We discuss variation in the oral structures and the evolution of the mechanism with respect to the interrelationships of archerfishes, and find that the oral structures of archerfishes support the blowpipe hypothesis but soft-tissue oral structures may also play a role in shooting. Finally, by comparing the morphology of archerfishes to their sister group, we find that the Leptobramidae has relevant shooting features in the oral cavity, suggesting that some components of the archerfish shooting mechanism are examples of co-opted or exapted traits

    Effect of microwave radiation on seed mortality of rubber vine (Cryptostegia grandiflora R.Br.), parthenium (Parthenium hysterophorous L.) and bellyache bush (Jatropha gossypiifolia L.)

    Get PDF
    A trial was undertaken to evaluate the effect of microwaves on seed mortality of three weed species. Seeds of rubber vine (Cryptostegia grandiflora R.Br.), parthenium (Parthenium hysterophorous L.) and bellyache bush (Jatropha gossypiifolia L.) were buried at six depths (0, 2.5, 5, 10, 20 and 40 cm) in coarse sand maintained at one of two moisture levels, oven dry or wet (field capacity), and then subjected to one of five microwave radiation durations of (0, 2, 4, 8 and 16 min). Significant interactions between soil moisture level, microwave radiation duration, seed burial depth and species were detected for mortality of seeds of all three species. Maximum seed mortality of rubber vine (88%), parthenium (67%) and bellyache bush (94%) occurred in wet soil irradiated for 16 min. Maximum seed mortality of rubber vine and bellyache bush seeds occurred in seeds buried at 2.5 cm depth whereas that of parthenium occurred in seeds buried at 10 cm depth. Maximum soil temperatures of 114.1 and 87.5°C in dry and wet soil respectively occurred at 2.5 cm depth following 16 min irradiation. Irrespective of the greater soil temperatures recorded in dry soil, irradiating seeds in wet soil generally increased seed mortality 2.9-fold compared with dry soil. Moisture content of wet soil averaged 5.7% compared with 0.1% for dry soil. Results suggest that microwave radiation has the potential to kill seeds located in the soil seed bank. However, many factors, including weed species susceptibility, determine the effectiveness of microwave radiation on buried seeds. Microwave radiation may be an alternative to conventional methods at rapidly depleting soil seed banks in the field, particularly in relatively wet soils that contain long lived weed seeds

    Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts

    Full text link
    The NASA STEREO mission opened up the possibility to forecast the arrival times, speeds and directions of solar transients from outside the Sun-Earth line. In particular, we are interested in predicting potentially geo-effective Interplanetary Coronal Mass Ejections (ICMEs) from observations of density structures at large observation angles from the Sun (with the STEREO Heliospheric Imager instrument). We contribute to this endeavor by deriving analytical formulas concerning a geometric correction for the ICME speed and arrival time for the technique introduced by Davies et al. (2012, ApJ, in press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a circle propagates outward, along a plane specified by a position angle (e.g. the ecliptic), with constant angular half width (lambda). This is an extension to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage that it is possible to assess clearly, in contrast to previous models, if a particular location in the heliosphere, such as a planet or spacecraft, might be expected to be hit by the ICME front. Our correction formulas are especially significant for glancing hits, where small differences in the direction greatly influence the expected speeds (up to 100-200 km/s) and arrival times (up to two days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the geometric correction becomes very similar to the one derived by M\"ostl et al. (2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic expressions can also be used for empirical or analytical models to predict the 1 AU arrival time of an ICME by correcting for effects of hits by the flank rather than the apex, if the width and direction of the ICME in a plane are known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics

    A systematic review of the impacts and management of introduced deer (family Cervidae) in Australia

    Get PDF
    Deer are among the world's most successful invasive mammals and can have substantial deleterious impacts on natural and agricultural ecosystems. Six species have established wild populations in Australia, and the distributions and abundances of some species are increasing. Approaches to managing wild deer in Australia are diverse and complex, with some populations managed as 'game' and others as 'pests'. Implementation of cost-effective management strategies that account for this complexity is hindered by a lack of knowledge of the nature, extent and severity of deer impacts. To clarify the knowledge base and identify research needs, we conducted a systematic review of the impacts and management of wild deer in Australia. Most wild deer are in south-eastern Australia, but bioclimatic analysis suggested that four species are well suited to the tropical and subtropical climates of northern Australia. Deer could potentially occupy most of the continent, including parts of the arid interior. The most significant impacts are likely to occur through direct effects of herbivory, with potentially cascading indirect effects on fauna and ecosystem processes. However, evidence of impacts in Australia is largely observational, and few studies have experimentally partitioned the impacts of deer from those of sympatric native and other introduced herbivores. Furthermore, there has been little rigorous testing of the efficacy of deer management in Australia, and our understanding of the deer ecology required to guide deer management is limited. We identified the following six priority research areas: (i) identifying long-term changes in plant communities caused by deer; (ii) understanding interactions with other fauna; (iii) measuring impacts on water quality; (iv) assessing economic impacts on agriculture (including as disease vectors); (v) evaluating efficacy of management for mitigating deer impacts; and (vi) quantifying changes in distribution and abundance. Addressing these knowledge gaps will assist the development and prioritisation of cost-effective management strategies and help increase stakeholder support for managing the impacts of deer on Australian ecosystems
    corecore