38,509 research outputs found

    Magnetic pressure support and accretion disk spectra

    Full text link
    Stellar atmosphere models of ionized accretion disks have generally neglected the contribution of magnetic fields to the vertical hydrostatic support, although magnetic fields are widely believed to play a critical role in the transport of angular momentum. Simulations of magnetorotational turbulence in a vertically stratified shearing box geometry show that magnetic pressure support can be dominant in the upper layers of the disk. We present calculations of accretion disk spectra that include this magnetic pressure support, as well as a vertical dissipation profile based on simulation. Magnetic pressure support generically produces a more vertically extended disk atmosphere with a larger density scale height. This acts to harden the spectrum compared to models that neglect magnetic pressure support. We estimate the significance of this effect on disk-integrated spectra by calculating an illustrative disk model for a stellar mass black hole, assuming that similar magnetic pressure support exists at all radii.Comment: submitted to Ap

    Low-cost, aerial photographic inventory of tidal wetlands

    Get PDF
    There are no author-identified significant results in this report

    Poynting Vector Flow in a Circular Circuit

    Full text link
    A circuit is considered in the shape of a ring, with a battery of negligible size and a wire of uniform resistance. A linear charge distribution along the wire maintains an electrostatic field and a steady current, which produces a constant magnetic field. Earlier studies of the Poynting vector and the rate of flow of energy considered only idealized geometries in which the Poynting vector was confined to the space within the circuit. But in more realistic cases the Poynting vector is nonzero outside as well as inside the circuit. An expression is obtained for the Poynting vector in terms of products of integrals, which are evaluated numerically to show the energy flow. Limiting expressions are obtained analytically. It is shown that the total power generated by the battery equals the energy flowing into the wire per unit time.Comment: 19 pages, 8 figure

    Earth feature identification for onboard multispectral data editing: Computational experiments

    Get PDF
    A computational model of the processes involved in multispectral remote sensing and data classification is developed as a tool for designing smart sensors which can process, edit, and classify the data that they acquire. An evaluation of sensor system performance and design tradeoffs involves classification rates and errors as a function of number and location of spectral channels, radiometric sensitivity and calibration accuracy, target discrimination assignments, and accuracy and frequency of compensation for imaging conditions. This model provides a link between the radiometric and statistical properties of the signals to be classified and the performance characteristics of electro-optical sensors and data processing devices. Preliminary computational results are presented which illustrate the editing performance of several remote sensing approaches

    Tele-operated high speed anthropomorphic dextrous hands with object shape and texture identification

    Get PDF
    This paper reports on the development of two number of robotic hands have been developed which focus on tele-operated high speed anthropomorphic dextrous robotic hands. The aim of developing these hands was to achieve a system that seamlessly interfaced between humans and robots. To provide sensory feedback, to a remote operator tactile sensors were developed to be mounted on the robotic hands. Two systems were developed, the first, being a skin sensor capable of shape reconstruction placed on the palm of the hand to feed back the shape of objects grasped and the second is a highly sensitive tactile array for surface texture identification

    Fringe spacing and phase of interfering matter waves

    Get PDF
    We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference. We subsequently demonstrate how the phase and polarisation of the rf radiation directly control the phase of the matter wave interference and provide a semi-classical interpretation of the results.Comment: 4 pages, 3 figure

    Long Strings, Anomaly Cancellation, Phase Transitions, T-duality and Locality in the 2d Heterotic String

    Full text link
    We study the noncritical two-dimensional heterotic string. Long fundamental strings play a crucial role in the dynamics. They cancel anomalies and lead to phase transitions when the system is compactified on a Euclidean circle. A careful analysis of the gauge symmetries of the system uncovers new subtleties leading to modifications of the worldsheet results. The compactification on a Euclidean thermal circle is particularly interesting. It leads us to an incompatibility between T-duality (and its corresponding gauge symmetry) and locality.Comment: 36 pages, 2 figure

    The stringy nature of the 2d type-0A black hole

    Full text link
    We investigate the thermodynamics of the RR charged two-dimensional type-0A black hole background at finite temperature, and compare with known 0A matrix model results. It has been claimed that there is a disagreement for the free energy between the spacetime and the dual matrix model. Here we find that this discrepancy is sensitive to how the cutoff is implemented on the spacetime side. In particular, the disagreement is resolved once we put the cutoff at a fixed distance away from the horizon, as opposed to a fixed position in space. Furthermore, the mass and the entropy of the black hole itself add up to an analytic contribution to the free energy, which is precisely reproduced by the 0A matrix model. We also use results from the 0A matrix model to predict the next to leading order contribution to the entropy of the black hole. Finally, we note that the black hole is characterized by a Hagedorn growth in its density of states below the Hagedorn temperature. This, together with other results, suggests there is a phase transition at this temperature.Comment: 1+21 pages; v2: Substantial changes in the body of the paper, main results the same. Clarified discussion on the thermodynamics, added section on a phase transition, references added. v3: Typos corrected. v4: Final version, to appear in JHE
    • …
    corecore