1,071 research outputs found

    Variance in cortical depth across the brain surface: Implications for transcranial stimulation of the brain

    Get PDF
    The distance between the surface of the scalp and the surface of the grey matter of the brain is a key factor in determining the effective dose of non‐invasive brain stimulation for an individual person. The highly folded nature of the cortical surface means that the depth of a particular brain area is likely to vary between individuals. The question addressed here is: what is the variability of this measure of cortical depth? 94 anatomical MRI images were taken from the OASIS database. For each image, the minimum distance from each point in the grey matter to the scalp surface was determined. Transforming these estimates into standard space meant that the coefficient of variation could be determined across the sample. The results indicated that depth variability is high across the cortical surface, even when taking sulcal depth into account. This was true even for the primary visual and motor areas, which are often used in setting TMS dosage. The correlation of the depth of these areas and the depth of other brain areas was low. The results suggest that dose‐setting of TMS based on visual or evoked potentials may offer poor reliability, and that individual brain images should be used when targeting non‐primary brain areas

    A single tDCS session can enhance numerical competence

    Get PDF
    While numerical skills are increasingly important in modern life, few interventions have been developed to support those with numeracy skills difficulties. Previous studies have demonstrated that applying transcranial Direct Current Stimulation (tDCS) can improve numerical skills. However, tDCS interventions designed to induce lasting changes typically involve reapplying brain-stimulation over several days. Repeated tDCS application can increase the risks associated with the procedure, as well as restricts the transferability of the method to a wider population, particularly those who may experience mobility issues, such as stroke survivors with acalculia. The current study investigated whether a single session of tDCS (anodal to right parietal lobe and cathodal to left parietal lobe), followed by four self-practice sessions without tDCS, could result in enhancement of numerical skills. Nineteen healthy adults (n = 10 tDCS, n = 9 sham control) implicitly learnt the magnitude association of nine arbitrary symbols, previously used by Cohen Kadosh et al. (2010). Numerical proficiency was assessed using number-to-space task, while automaticity was assessed with numerical Stroop. Results revealed that single-session tDCS had a significant effect on participants' accuracy on the number-to-space tasks, but not on the numerical Stroop task's congruity effect, implying automaticity may require longer practice. We conclude that a single session of tDCS should be considered as an avenue for interventions

    Higher policy uncertainty curbs business investment and employment growth

    Get PDF
    The years following the global economic crisis of 2008-2009 have been marked by policy uncertainty, both in the US and across the world. In new research, Scott R. Baker, Nicholas Bloom, and Steven Davis develop an index of economic policy uncertainty to examine how this uncertainty shapes economic outcomes. Using data going back to 1900 and extending coverage to 11 major economies, they find that heightened levels of policy uncertainty leads to firms reducing investment and employment, which in turn contributes to the sluggish growth which many economies have experienced in recent years

    Water-immersion finger-wrinkling improves grip efficiency in handling wet objects

    Get PDF
    For most people, immersing their hands in water leads to wrinkling of the skin of the fingertips. This phenomenon is very striking, yet we know little about why it occurs. It has been proposed that the wrinkles act to distribute water away from the contact surfaces of the fingertip, meaning that wet objects can be grasped more readily. This study examined the coordination between the grip force used to hold an object and the load force exerted on it, when participants used dry or wrinkly fingers, or fingers that were wet but not wrinkly. The results showed that wrinkly fingers reduce the grip force needed to grip a wet object, bringing that force in line with what is needed for handling a dry object. The results suggest that enhancing grip force efficiency in watery environments is a possible adaptive reason for the development of wrinkly fingers

    Reconciling the Classical-Field Method with the Beliaev Broken Symmetry Approach

    Full text link
    We present our views on the issues raised in the chapter by Griffin and Zaremba [A. Griffin and E. Zaremba, in Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics, N. P. Proukakis, S. A. Gardiner, M. J. Davis, and M. H. Szymanska, eds., Imperial College Press, London (in press)]. We review some of the strengths and limitations of the Bose symmetry-breaking assumption, and explain how such an approach precludes the description of many important phenomena in degenerate Bose gases. We discuss the theoretical justification for the classical-field (c-field) methods, their relation to other non-perturbative methods for similar systems, and their utility in the description of beyond-mean-field physics. Although it is true that present implementations of c-field methods cannot accurately describe certain collective oscillations of the partially condensed Bose gas, there is no fundamental reason why these methods cannot be extended to treat such scenarios. By contrast, many regimes of non-equilibrium dynamics that can be described with c-field methods are beyond the reach of generalised mean-field kinetic approaches based on symmetry-breaking, such as the ZNG formalism.Comment: 8 pages. Unedited version of chapter to appear in Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (Vol. 1 Cold Atoms Series). N.P. Proukakis, S.A. Gardiner, M.J. Davis and M.H. Szymanska, eds. Imperial College Press, London (in press). See http://www.icpress.co.uk/physics/p817.html v2: Added arXiv cross-reference

    Comparing life histories across taxonomic groups in multiple dimensions: how mammal-like are insects?

    Get PDF
    Explaining variation in life histories remains a major challenge because they are multi-dimensional and there are many competing explanatory theories and paradigms. An influential concept in life history theory is the ’fast-slow continuum’, exemplified by mammals. Determining the utility of such concepts across taxonomic groups requires comparison of the groups’ life histories in multidimensional space. Insects display enormous species richness and phenotypic diversity, but testing hypotheses like the ’fast-slow continuum’ has been inhibited by incomplete trait data. We use phylogenetic imputation to generate complete datasets of seven life history traits in orthopterans (grasshoppers and crickets) and examine the robustness of these imputations for our findings. Three phylogenetic principal components explain 83-96% of variation in these data. We find consistent evidence of an axis mostly following expectations of a ’fast-slow continuum’, except that ’slow’ species produce larger, not smaller, clutches of eggs. We show that the principal axes of variation in orthopterans and reptiles are mutually explanatory, as are those of mammals and birds. Essentially, trait covariation in Orthoptera, with ’slow’ species producing larger clutches, is more reptile-like than mammal-or-bird-like. We conclude that the ’fast-slow continuum’ is less pronounced in Orthoptera than in birds and mammals, reducing the universal relevance of this pattern, and the theories that predict it

    Automatic categorization of diverse experimental information in the bioscience literature

    Get PDF
    Background: Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. Results: We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. Conclusions: Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort

    "Non-invasive" brain stimulation is not non-invasive

    Get PDF
    The functions of the healthy brain can be studied in two main ways. Firstly, the changes in the brain's state can be measured using techniques such as EEG or functional MRI. Secondly, the activity of the brain can be disrupted through the use of brain stimulation. The famous experiments of Wilder Penfield and colleagues in the 1950s showed the power of brain stimulation in people whose brain was exposed in surgery, and highlighted the possibility of inducing changes in the brain's state to demonstrate the involvement of specific brain areas in particular functions (Jasper and Penfield, 1954). Two main techniques are available for human brain stimulation: transcranial magnetic stimulation (TMS) and transcranial current stimulation (tCS). More recently, it has been suggested that TMS and tCS might be used to enhance brain function, as well as to disrupt activity. These techniques have collectively become known as “non-invasive brain stimulation.” We argue that this term is inappropriate and perhaps oxymoronic, as it obscures both the possibility of side-effects from the stimulation, and the longer-term effects (both adverse and desirable) that may result from brain stimulation. We also argue that the established tendency for the effects of TMS and tCS to spread from the target brain area to neighboring areas is in itself contrary to the definition of non-invasiveness. We argue that the traditional definition of an invasive procedure, one which requires an incision or insertion in the body, should be re-examined, and we propose that it be widened to include targeted transcutaneous interventions
    • 

    corecore