557 research outputs found

    Construction of an all-sky camera

    Get PDF
    The "All-Sky" camera herein described is an outgrowth of camera* operated in Alaska by the staff of the Geophysical Institute. The principle has been of use in cloud studies and was first used by C. W. Gar tie in for auroral photography. In its p resent form the camera is capable of recording stable or slowly moving auroral forms and is useful for synoptic "mapping of auroras and detail studies. By proper scaling methods the camera gives fa irly well defined mapping of aurora occurring within a circle of 500 km radius and along the lengths of arcs, i.e . geomagnetic East and West, to distances of about 1200 km. These radii are based on an estimated lower border height of 100 km with curved earth consideration. Since the main use of the camera will be in high latitudes where severe weather conditions occur, special effort has been made to design a rugged instrument capable of withstanding high winds and low temperatures. Ease of operation under adverse weather conditions has also been a consideration. Whenever possible, use has been made of commercially available parts to reduce construction costs. An attempt has been made to simplify the construction of those parts not commercially available. The camera is designed to be built in a shop having a d rill press, lathe, milling machine, welding equipment, and carpentry tools. The recording element is a 16 mm movie camera with a 50 mm f/l. 5 lens and equipped for lapse-time photography. The camera views the entire sky in a convex mirror. A number of cameras have been considered, two of which, the Bolex H-16 Leader and the Kodak K-100, appear best suited with respect to cost and adaptability. The Bolex H-16 is equipped for lapse-time photography and requires no modification. The Bolex has the disadvantage of only sixteen feet of film run per spring winding, hence, requires attention each ten hours if one picture per minute is to be taken. The Kodak K-100 must be modified for lapse photography but has forty feet of useful film run and will operate without attention for twenty-four hours at one frame per minute. Both these cameras may be solenoid driven which allows variation of exposure times with minimum effort. An overall view of the camera is shown in Fig. 1. Fig. 2 shows t the optical arrangement. Calculations made on the basis of Fig. 2 and the graph of height, angle, and distance, Fig. 3, allows the location with respect to the earth's surface of any point on the photographic image.Ye

    Quantum tunneling of superconducting string currents

    Full text link
    We investigate the decay of current on a superconducting cosmic string through quantum tunneling. We construct the instanton describing tunneling in a simple bosonic string model, and estimate the decay rate. The tunneling rate vanishes in the limit of a chiral current. This conclusion, which is supported by a symmetry argument, is expected to apply in general. It has important implications for the stability of chiral vortons.Comment: 16 pages, 2 figure

    Drum vortons in high density QCD

    Get PDF
    Recently it was shown that high density QCD supports of number of topological defects. In particular, there are U(1)_Y strings that arise due to K^0 condensation that occurs when the strange quark mass is relatively large. The unique feature of these strings is that they possess a nonzero K^+ condensate that is trapped on the core. In the following we will show that these strings (with nontrivial core structure) can form closed loops with conserved charge and currents trapped on the string worldsheet. The presence of conserved charges allows these topological defects, called vortons, to carry angular momentum, which makes them classically stable objects. We also give arguments demonstrating that vortons carry angular momentum very efficiently (in terms of energy per unit angular momentum) such that they might be the important degrees of freedom in the cores of neutron stars.Comment: 11 pages, accepted for publication in Physical Review

    Fermionic massive modes along cosmic strings

    Get PDF
    The influence on cosmic string dynamics of fermionic massive bound states propagating in the vortex, and getting their mass only from coupling to the string forming Higgs field, is studied. Such massive fermionic currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for publication in Phys. Rev.

    Equation of state of cosmic strings with fermionic current-carriers

    Get PDF
    The relevant characteristic features, including energy per unit length and tension, of a cosmic string carrying massless fermionic currents in the framework of the Witten model in the neutral limit are derived through quantization of the spinor fields along the string. The construction of a Fock space is performed by means of a separation between longitudinal modes and the so-called transverse zero energy solutions of the Dirac equation in the vortex. As a result, quantization leads to a set of naturally defined state parameters which are the number densities of particles and anti-particles trapped in the cosmic string. It is seen that the usual one-parameter formalism for describing the macroscopic dynamics of current-carrying vortices is not sufficient in the case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected, comments and references added. Accepted for publication in Phys. Rev.

    Neutral top-pion and lepton flavor violating processes

    Full text link
    In the context of topcolor-assisted techicolor(TC2) models, we study the contributions of the neutral top-pion πt0\pi^{0}_{t} to the lepton flavor violating(LFV) processes liljγl_{i}\to l_{j}\gamma and liljlklll_{i}\to l_{j}l_{k}l_{l}. We find that the present experimental bound on μeγ\mu\to e\gamma gives severe constraints on the free parameters of TC2TC2 models. Taking into account these constraints, we consider the processes liljlklll_{i}\to l_{j}l_{k}l_{l} generated by top-pion exchange at the tree-level and the one loop level, and obtain Br(μ3e)2.87×1014Br(\mu\to 3e)\simeq 2.87\times 10^{-14}, 1.1×1015Br(τ3e)Br(τ2eμ)4.4×10151.1\times 10^{-15}\leq Br(\tau\to 3e)\simeq Br(\tau\to 2e\mu)\leq 4.4 \times 10^{-15} , 3.1×1015Br(τ2μe)Br(τ3μ)1.5×10143.1\times 10^{-15} \leq Br(\tau\to 2\mu e)\simeq Br(\tau\to 3\mu)\leq 1.5 \times 10^{-14} in most of the parameter space.Comment: latex files,16 pages, 6 figures. Submitted to Phys. Rev.

    Vortex Rings in two Component Bose-Einstein Condensates

    Full text link
    We study the structure of the vortex core in two-component Bose-Einstein condensates. We demonstrate that the order parameter may not vanish and the symmetry may not be restored in the core of the vortex. In this case such vortices can form vortex rings known as vortons in particle physics literature. In contrast with well-studied superfluid 4He^4He, where similar vortex rings can be stable due to Magnus force only if they move, the vortex rings in two-component BECs can be stable even if they are at rest. This beautiful effect was first discussed by Witten in the cosmic string context, where it was shown that the stabilization occurs due to condensation of the second component of the field in the vortex core. This second condensate trapped in the core may carry a current along the vortex ring counteracting the effect of string tension that causes the loop to shrink. We speculate that such vortons may have been already observed in the laboratory. We also speculate that the experimental study of topological structures in BECs can provide a unique opportunity to study cosmology and astrophysics by doing laboratory experiments.Comment: 21 pages, 2 figure

    Topological Defects and CMB anisotropies : Are the predictions reliable ?

    Get PDF
    We consider a network of topological defects which can partly decay into neutrinos, photons, baryons, or Cold Dark Matter. We find that the degree-scale amplitude of the cosmic microwave background (CMB) anisotropies as well as the shape of the matter power spectrum can be considerably modified when such a decay is taken into account. We conclude that present predictions concerning structure formation by defects might be unreliable.Comment: 14 pages, accepted for publication in PR

    Axion Radiation from Strings

    Get PDF
    This paper revisits the problem of the string decay contribution to the axion cosmological energy density. We show that this contribution is proportional to the average relative increase when axion strings decay of a certain quantity NaxN_{\rm ax} which we define. We carry out numerical simulations of the evolution and decay of circular and non-circular string loops, of bent strings with ends held fixed, and of vortex-antivortex pairs in two dimensions. In the case of string loops and of vortex-antivortex pairs, NaxN_{\rm ax} decreases by approximately 20%. In the case of bent strings, NaxN_{\rm ax} remains constant or increases slightly. Our results imply that the string decay contribution to the axion energy density is of the same order of magnitude as the well-understood contribution from vacuum realignment.Comment: 29 pages, 10 figure

    Constraints on diffuse neutrino background from primordial black holes

    Get PDF
    We calculated the energy spectra and the fluxes of electron neutrino emitted in the process of evaporation of primordial black holes (PBHs) in the early universe. It was assumed that PBHs are formed by a blue power-law spectrum of primordial density fluctuations. We obtained the bounds on the spectral index of density fluctuations assuming validity of the standard picture of gravitational collapse and using the available data of several experiments with atmospheric and solar neutrinos. The comparison of our results with the previous constraints (which had been obtained using diffuse photon background data) shows that such bounds are quite sensitive to an assumed form of the initial PBH mass function.Comment: 18 pages,(with 7 figures
    corecore