1,700 research outputs found

    Anisotropic Aerogels for Studying Superfluid 3^3He

    Full text link
    It may be possible to stabilize new superfluid phases of 3^{3}He with anisotropic silica aerogels. We discuss two methods that introduce anisotropy in the aerogel on length scales relevant to superfluid 3^{3}He. First, anisotropy can be induced with uniaxial strain. A second method generates anisotropy during the growth and drying stages. We have grown cylindrical \sim98% aerogels with anisotropy indicated by preferential radial shrinkage after supercritical drying and find that this shrinkage correlates with small angle x-ray scattering (SAXS). The growth-induced anisotropy was found to be 90\sim90^\circ out of phase relative to that induced by strain. This has implications for the possible stabilization of superfluid phases with specific symmetry.Comment: 6 pages, 4 figures, submitted to Quantum Fluids and Solids (QFS) conference 200

    Using cardiovascular cells from human pluripotent stem cells for COVID-19 research: the heart fails

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the coronavirus disease (COVID-19) outbreak that became a pandemic in 2020, causing more than 30 million infections and 1 million deaths to date. As the scientific community has looked for vaccines and drugs to treat or eliminate the virus, unexpected features of the disease have emerged. Apart from respiratory complications, cardiovascular disease has emerged as a major indicator of poor prognosis in COVID-19. It has therefore become of utmost importance to understand how SARS-CoV-2 damages the heart. Human pluripotent stem cell (hPSC) cardiovascular derivatives were rapidly recognized as an invaluable tool to address this, not least because one of the major receptors for the virus is not recognized by SARS-CoV-2 in mice. Here, we outline how hPSC-derived cardiovascular cells have been utilized to study COVID-19, and their potential for further understanding the cardiac pathology and in therapeutic development.Stem cells & developmental biolog

    A fly in the buttermilk: Descriptions of university life by successful Black undergraduate students at a predominately white southeastern university

    Get PDF
    Although many predominantly white universities exert great effort to recruit minority students, statistics regarding retention and graduation for these students are disturbing. Previous research indicates that academic concerns are not paramount in the attrition of minority students, suggesting that greater attention must be given educational experiences of black students over and above academic matters. Using in-depth phenomenological interviewing, 11 graduating seniors from diverse majors were asked to describe salient incidents of their university experience. These interviews were transcribed verbatim and subjected to hermeneutic interpretation by an interdisciplinary research group. Dominant in student descriptions of their experiences were five themes: (1) It happens every day : Unfairness/Sabotage/Condescension; (2) You have to initiate the conversation ; (3) They seem the same; I\u27m the one who\u27s different ; (4) I have to prove I\u27m worthy to be here ; and (5) Sometimes I\u27m not even here/Sometimes I have to represent every black student : Invisibility and Supervisibility

    Gravitational-wave astronomy: the high-frequency window

    Full text link
    This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.Comment: 21 pages, 5 figures, Lectures presented at the 2nd Aegean Summer School on the Early Universe, Syros, Greece, September 200

    Superradiation from Crystals of High-Spin Molecular Nanomagnets

    Full text link
    Phenomenological theory of superradiation from crystals of high-spin molecules is suggested. We show that radiation friction can cause a superradiation pulse and investigate the role of magnetic anisotropy, external magnetic field and dipole-dipole interactions. Depending on the contribution of all these factors at low temperature, several regimes of magnetization of crystal sample are described. Very fast switch of magnetization's direction for some sets of parameters is predicted.Comment: 10 pages, 3 figure

    The UNC-Wisconsin rhesus macaque neurodevelopment database: A structural MRI and DTI database of early postnatal development

    Get PDF
    Rhesus macaques are commonly used as a translational animal model in neuroimaging and neurodevelopmental research. In this report, we present longitudinal data from both structural and diffusion MRI images generated on a cohort of 34 typically developing monkeys from 2 weeks to 36 months of age. All images have been manually skull stripped and are being made freely available via an online repository for use by the research community

    On the dual structure of the auditory brainstem response in dogs

    Get PDF
    Objective: To use the over-complete discrete wavelet transform (OCDWT) to further examine the dual structure of auditory brainstem response (ABR) in the dog. Methods: ABR waveforms recorded from 20 adult dogs at supra-threshold (90 and 70 dBnHL) and threshold (0-15 dBSL) levels were decomposed using a six level OCDWT and reconstructed at individual scales (frequency ranges) A6 (0-391 Hz), D6 (391-781 Hz), and D5 (781-1563 Hz). Results: At supra-threshold stimulus levels, the A6 scale (0-391 Hz) showed a large amplitude waveform with its prominent wave corresponding in latency with ABR waves II/III; the D6 scale (391-781 Hz) showed a small amplitude waveform with its first four waves corresponding in latency to ABR waves I, II/III, V, and VI; and the D5 scale (781-1563 Hz) showed a large amplitude, multiple peaked waveform with its first six waves corresponding in latency to ABR waves I, II, III, IV, V, and VI. At threshold stimulus levels (0-15 dBSL), the A6 scale (0-391 Hz) continued to show a relatively large amplitude waveform, but both the D6 and D5 scales (391781 and 781-1563 Hz, respectively) now showed relatively small amplitude waveforms. Conclusions: A dual structure exists within the ABR of the dog, but its relative structure changes with stimulus level. Significance: The ABR in the dog differs from that in the human both in the relative contributions made by its different frequency components, and the way these components change with stimulus level. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved

    CMB polarization from secondary vector and tensor modes

    Get PDF
    We consider a novel contribution to the polarization of the Cosmic Microwave Background induced by vector and tensor modes generated by the non-linear evolution of primordial scalar perturbations. Our calculation is based on relativistic second-order perturbation theory and allows to estimate the effects of these secondary modes on the polarization angular power-spectra. We show that a non-vanishing B-mode polarization unavoidably arises from pure scalar initial perturbations, thus limiting our ability to detect the signature of primordial gravitational waves generated during inflation. This secondary effect dominates over that of primordial tensors for an inflationary tensor-to-scalar ratio r<106r<10^{-6}. The magnitude of the effect is smaller than the contamination produced by the conversion of polarization of type E into type B, by weak gravitational lensing. However the lensing signal can be cleaned, making the secondary modes discussed here the actual background limiting the detection of small amplitude primordial gravitational waves.Comment: 14 pages, 3 figures, minor changes matching the version to be published in Phys. Rev.

    A Supersymmetric SO(10) Model with Inflation and Cosmic Strings

    Full text link
    We have built a supersymmetric SO(10) model consistent with cosmological observations. The model gives rise to a false vacuum hybrid inflationary scenario which solves the monopole problem. We argue that this type of inflationary scenario is generic in supersymmetric SO(10) model, and arises naturally from the theory. Neither any external field nor any external symmetry has to be added. It can just be a consequence of the theory. In our specific model, at the end of inflation, cosmic strings form. The properties of the strings are presented. The cosmic background radiation anisotropies induced by the inflationary perturbations and the cosmic strings are estimated. The model produces a stable lightest superparticle and a very light left-handed neutrino which may serve as the cold and hot dark matter. The properties of a mixed cosmic string-inflationary large scale structure formation scenario are discussed.Comment: 32 pages, uses RevTex. Misprint in a referenc

    Structure of the icosahedral Ti-Zr-Ni quasicrystal

    Full text link
    The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined by invoking similarities to periodic crystalline phases, diffraction data and the results from ab initio calculations. The structure is modeled by decorations of the canonical cell tiling geometry. The initial decoration model is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1 approximant structure of the quasicrystal. The decoration model is optimized using a new method of structural analysis combining a least-squares refinement of diffraction data with results from ab initio calculations. The resulting structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration rule and structural details are discussed.Comment: 12 pages, 8 figure
    corecore