1,695 research outputs found

    Ongoing Clinical Trials of the Pleiotropic Effects of Statins

    Get PDF
    Jean Davignon1, Lawrence A Leiter21Clinical Research Institute of Montreal, Montreal, QC, Canada; 2Division of Endocrinology and Metabolism, St Michael’s Hospital, Toronto, ON, CanadaBackground: The multiple effects (ie, pleiotropic effects of statins) have received increasing recognition and may have clinical applicability across a broad range of cardiovascular and noncardiovascular conditions. Objective: To determine the relevance and significance of ongoing clinical trials of the pleiotropic effects of statins, focusing on nonlipid effects. Method: Ongoing trials were identified through personal communication, reports presented at scientific meetings (2000–2004), and queries made to AstraZeneca, Bristol-Myers Squibb Co, Merck & Co, Novartis, and Pfizer, manufacturers of the currently marketed statins. Published trials and other source material were identified through electronic searches on MEDLINE (1990–2003), abstract books, and references identified from bibliographies of pertinent articles. Eligible studies were the clinical trials of statins currently under way in which primary or secondary outcomes included the statins’ nonlipid (ie, pleiotropic) effect(s). Data were extracted and trial quality was assessed by the authors. Results: Of the 22 ongoing trials of the nonlipid effects of statins identified, 10 assessed inflammatory markers and plaque stabilization, 4 assessed oxidized low density lipoprotein/vascular oxidant stress, 3 assessed end-stage renal disease, 3 assessed fibrinogen/viscosity, 2 assessed endothelial function, 2 assessed acute coronary syndrome, 2 assessed aortic stenosis progression, and 1 each assessed hypertension, osteoporosis, ischemic burden, Alzheimer’s disease, multiple sclerosis, and stroke (outcomes often overlapped). Conclusion: Given the excellent safety and tolerability of statins as a class, full exploration of their pleiotropic effects has the potential to provide additional benefits to many patients. Keywords: atherosclerosis, cholesterol, clinical trials, endothelium, lipoproteins, metabolism, myocardial infarction, pharmacology, vasculatur

    Maintenance of cytomegalovirus-specific CD4pos T-cell response in rheumatoid arthritis patients receiving anti-tumor necrosis factor treatments

    Get PDF
    International audienceINTRODUCTION: Anti-tumor necrosis factor (TNF)-α biotherapies have considerably changed the treatment of rheumatoid arthritis (RA). However, serious infections are a major concern in patients with rheumatic diseases treated with anti-TNF-α. Little is known about viral, especially latent, infections in anti-TNF-α treatments. Infections by cytomegalovirus (CMV), a β-herpes virus, are frequent and induce a strong CD4pos T-cell immunity, which participates in the control of infection. We thus have chosen to analyze the CD4pos T-cell response to CMV antigens as a model of antiviral response in RA patients treated with anti-TNF-α. CD28 expression was evaluated. METHODS: We have measured the CD4pos response to CMV antigens in RA patients, before and after initiation of treatment with an anti-TNF-α agent. The intracellular production of interferon (IFN)-γ in total and CD28neg CD4pos T cells in response to CMV antigens (Ags) was evaluated with flow cytometry. The proliferation of total CD4pos T cells in the presence of CMV antigens was measured with 3H-thymidine incorporation. RESULTS: Anti-TNF-α treatments impaired neither the anti-CD4pos anti-CMV IFN-γ response nor the proliferative response in patients. The percentage of CD28neg CD4pos cells remained constant. CONCLUSIONS: Our data suggest that the CD4pos T-cell response against CMV is not altered by anti-TNF-α treatments and that infection remains controlled in treated RA patients latently infected with CMV. Our observation brings new insight into the current knowledge of the risks of infection in patients treated with anti-TNF-α biotherapies

    Tumor necrosis factor alpha and adalimumab differentially regulate CD36 expression in human monocytes

    Get PDF
    In chronic inflammatory diseases, such as rheumatoid arthritis, inflammation acts as an independent cardiovascular risk factor and the use of anti-inflammatory drugs, such as anti-tumor necrosis factor alpha (anti-TNFα), may decrease this risk. The phagocytosis of oxidized low density lipoproteins (LDLs) accumulated in the subendothelium by mononuclear cells influences atherosclerosis and depends on CD36 expression. We investigated the role of TNFα and adalimumab, a human anti-TNFα monoclonal antibody widely used in human pathology, in CD36 expression in human monocytes. Human monocytes were prepared by adherence from whole-blood buffy-coat fractions from healthy donors. CD36 expression was assessed by RT-PCR and flow cytometry, with various TNFα or adalimumab concentrations. Implication of peroxisome proliferator-activated receptor (PPAR)γ in the regulation of CD36 expression was assessed using specific inhibitor or gel shift assays. The impact of redox signaling was investigated using quantification of reactive oxygen species, antioxidant and a NADPH oxidase inhibitor. The F(ab')2 fragment of adalimumab was isolated and its effect was analyzed. TNFα inhibits both CD36 membrane expression and mRNA expression. This inhibition involves a reduction in PPARγ activation. In contrast, adalimumab increases both CD36 membrane expression and mRNA expression. This induction is independent of the Fc portion of adalimumab and involves redox signaling via NADPH oxidase activation. CD36 expression on human monocytes is inhibited by TNFα and independently increased by adalimumab. These data highlight that pro-inflammatory cytokines and their specific neutralization influence the expression of cellular receptors implicated in atherosclerosis. Further studies are needed to investigate the clinical implications of these results in accelerated atherosclerosis observed in rheumatoid arthritis

    Modulation of pro-inflammatory activation of monocytes and dendritic cells by aza-bis-phosphonate dendrimer as an experimental therapeutic agent

    Get PDF
    INTRODUCTION: Our objective was to assess the capacity of dendrimer aza-bis-phosphonate (ABP) to modulate phenotype of monocytes (Mo) and monocytes derived dendritic cells (MoDC) activated in response to toll-like receptor 4 (TLR4) and interferon γ (IFN- γ) stimulation. METHODS: Mo (n = 12) and MoDC (n = 11) from peripheral blood of healthy donors were prepared. Cells were preincubated or not for 1 hour with dendrimer ABP, then incubated with lipopolysaccharide (LPS; as a TLR4 ligand) and (IFN-γ) for 38 hours. Secretion of tumor necrosis factor α (TNFα), interleukin (IL) -1, IL-6, IL-12, IL-10 and IL-23 in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA) and Cytokine Bead Array. Differentiation and subsequent maturation of MoDC from nine donors in the presence of LPS were analyzed by flow cytometry using CD80, CD86, CD83 and CD1a surface expression as markers. RESULTS: Mo and MoDC were orientated to a pro-inflammatory state. In activated Mo, TNFα, IL-1β and IL-23 levels were significantly lower after prior incubation with dendrimer ABP. In activated MoDC, dendrimer ABP promoted IL-10 secretion while decreasing dramatically the level of IL-12. TNFα and IL-6 secretion were significantly lower in the presence of dendrimer ABP. LPS driven maturation of MoDC was impaired by dendrimer ABP treatment, as attested by the significantly lower expression of CD80 and CD86. CONCLUSION: Our data indicate that dendrimer ABP possesses immunomodulatory properties on human Mo and MoDC, in TLR4 + IFN-γ stimulation model, by inducing M2 alternative activation of Mo and promoting tolerogenic MoDC

    Apolipoprotein E polymorphism and plasma cholesterol response to probucol

    Full text link
    Probucol has been shown to be an effective and well-tolerated cholesterol-lowering drug. However, response in terms of cholesterol reduction has been shown to vary significantly among individuals. The purpose of this study was to assess the role of apolipoprotein E polymorphism in determining this variation. A retrospective study of 89 hypercholesterolemic type II patients who had been treated with probucol (1 g/d) and for whom the apolipoprotein E phenotype was known was carried out. The patients were first grouped into those with heterozygous familial hypercholesterolemia (FH) and those considered to have other forms of hypercholesterolemia (non-FH). Further subclassification of the individuals in both groups as IIa or IIb, allowed the definition of four diagnostic classes, FH IIa or IIb and non-FH IIa or IIb. Among these classes there was no significant heterogeneity for the relationship between response and age or sex. After correction for between-class heterogeneity in duration of probucol treatment, comparison of individuals with the apo E3/3 phenotype with those carrying the [epsilon]4 allele showed significant differences in cholesterol reduction both absolute change and percent change. Further contrasts between diagnostic and apo E genotype stratifications of these data showed that the FH patients carrying the [epsilon]4 allele had the greatest reduction in cholesterol level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26631/1/0000172.pd

    Impact of apolipoprotein E genotype variation on means, variances, and correlations of plasma lipid, lipoprotein, and apolipoprotein traits in octogenarians

    Full text link
    The impact of apoliporotein (apo) E genotype variation on means, variances and correlations between plasma lipid traits was studied in male and female octogenarians. Females had significantly higher mean levels of all 10 of the measured plasma lipid traits than males. The subset of concomitants (i.e., age, height, weight, body mass index, glucose and uric acid) that made a statistically significant contribution to interindividual variability was different in males and females for every trait considered. Gender-specific associations between variation in apo E genotype and variation in pariticular measures of lipid metabolism, adjusted for concomitant variation, were observed: in females there were no statistically significant associations while in males the means of the three common apo E genotypes were significantly different for adjusted measures of total cholesterol, low density lipoprotein cholesterol and low density lipoprotin-apo B. The common apo E genotypes were heterogeneous with respect to intragenotypic variance for adjusted logtransformed triglyceride levels in females only. Finally, the three common apo E genotypes were heterogeneous with respect to the correlation between traits, adjusted for concomitant variation, and gender influenced the manner in which the genotypes differed for specific correlations. This study documents that variation in the apo E gene has a significant impact on means, variances and correlations of plasma lipid traits in octogenarians, but the effects are context-, that is, gender- and age-, dependent. © 1995 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38262/1/1320580405_ftp.pd

    Polarization of Rheumatoid Macrophages by TNF Targeting Through an IL-10/STAT3 Mechanism

    Get PDF
    Macrophages contribute to the pathogenesis of rheumatoid arthritis (RA). They can display different states of activation or “polarization,” notably the so-called inflammatory “M1” and the various alternative “M2” polarizations, characterized by distinct functions. Data regarding the effects of RA anti-cytokine biological disease-modifying anti-rheumatic drugs (bDMARDs) on macrophage polarization are scarce. We aimed to assess in vitro modulation of macrophage polarization by bDMARDs targeting pro-inflammatory cytokines in RA. We generated monocyte derived macrophages using blood samples from 20 RA patients with active RA and 30 healthy controls. We evaluated in vitro the impact on M1 inflammatory macrophages of: etanercept (ETA), adalimumab (ADA), certolizumab (CZP), tocilizumab (TCZ), and rituximab (RTX). We assessed the impact on macrophage polarization using flow cytometry and RTqPCR to study the expression of surface markers and perform functional studies of cytokine production, phagocytosis, and negative feedback control of inflammation. Among evaluated bDMARDs, anti-TNF agents modulated the polarization of inflammatory macrophages by decreasing inflammatory surface markers (CD40, CD80) and favoring alternative markers (CD16, CD163, MerTK). Anti-TNF agents also induced alternative functions in macrophages activated in inflammatory condition with (i) the inhibition of inflammatory cytokines (TNF, IL-6, IL-12), (ii) an increase in phagocytosis. These findings were mechanistically related to an increase in early IL-10 production, responsible for higher negative feedback control of inflammation involving SOCS3 and Gas6. This IL-10 effect was STAT3-dependent. Anti-TNF agents not only inhibit in vitro inflammatory functions of macrophages, but also favor resolution of inflammation through polarization toward alternative features specifically involving the IL-10/STAT3 axis

    In Silico Analysis of the Apolipoprotein E and the Amyloid β Peptide Interaction: Misfolding Induced by Frustration of the Salt Bridge Network

    Get PDF
    The relationship between Apolipoprotein E (ApoE) and the aggregation processes of the amyloid β (Aβ) peptide has been shown to be crucial for Alzheimer's disease (AD). The presence of the ApoE4 isoform is considered to be a contributing risk factor for AD. However, the detailed molecular properties of ApoE4 interacting with the Aβ peptide are unknown, although various mechanisms have been proposed to explain the physiological and pathological role of this relationship. Here, computer simulations have been used to investigate the process of Aβ interaction with the N-terminal domain of the human ApoE isoforms (ApoE2, ApoE3 and ApoE4). Molecular docking combined with molecular dynamics simulations have been undertaken to determine the Aβ peptide binding sites and the relative stability of binding to each of the ApoE isoforms. Our results show that from the several ApoE isoforms investigated, only ApoE4 presents a misfolded intermediate when bound to Aβ. Moreover, the initial α-helix used as the Aβ peptide model structure also becomes unstructured due to the interaction with ApoE4. These structural changes appear to be related to a rearrangement of the salt bridge network in ApoE4, for which we propose a model. It seems plausible that ApoE4 in its partially unfolded state is incapable of performing the clearance of Aβ, thereby promoting amyloid forming processes. Hence, the proposed model can be used to identify potential drug binding sites in the ApoE4-Aβ complex, where the interaction between the two molecules can be inhibited
    corecore