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INTRODUCTION

EXPERIMENTAL AND CLINICAL STUDIES have documented
the role of reactive oxygen species (ROS) in various pa-

thologies, including cancer and cardiovascular disease (24).
In particular, the oxidative modification of low-density
lipoprotein (LDL) has received much attention because of its
suggested participation in the early events of atherogenesis
(2, 52). Recent documentation of the involvement of oxidized
forms of LDL in inflammatory processes adds another per-

spective to the importance of oxidized LDL in atherogenesis
(34). Furthermore, there is evidence in humans that circulat-
ing oxidized LDL correlates with severity of atherosclerosis
and contributes to plaque instability (18, 36). 

Although the precise mechanisms for in vivo LDL oxida-
tion are unknown, several attempts have been made to deter-
mine the degree and significance of this phenomenon. One
method, the susceptibility of LDL to copper-initiated oxida-
tion (7, 21), has been abundantly used as a marker for en-
hanced sensitivity to atherosclerosis, although its relevance to
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ABSTRACT

Oxidant stress and overproduction of reactive oxygen species (ROS) contribute to the development of cardio-
vascular disease. Oxidative modifications of low-density lipoproteins (LDL) are thought to play an early and
critical role in atherogenesis. LDL oxidation can be reproduced in vitro, but results usually show a large in-
terindividual variation not entirely explained by the environment. Free radical-induced hemolysis is also pro-
posed to reveal the overall antioxidant capacity. The roles of genetic factors and exercise on the variability of
both measures were investigated. The study was conducted in 146 healthy individuals from 28 families partic-
ipating in a 20-week exercise-training program. In addition to important biological and environmental influ-
ences on variation, significant familial aggregation was detected in all oxidation measures. Exercise did not
significantly modify the LDL oxidation parameters, but significantly increased resistance was observed in the
free radical-induced hemolysis, especially in women, this effect was not observed in smokers. In total, the
findings suggest the presence of familial effects in the response to ex vivo oxidation. Further, smoking negates
the beneficial effect of exercise training on erythrocyte resistance to free radical-induced hemolysis. These ob-
servations emphasize the importance of context in the evaluation of exercise and oxidant stress. Antioxid. Redox
Signal. 8, 123–130.
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in vivo atherogenesis has not been clearly established (13, 26,
44). In addition to LDL in vitro oxidation, another measure of
overall antioxidant defense based on the susceptibility of
erythrocytes to free radical-induced hemolysis has been set
up and used under various clinical and experimental condi-
tions (5, 22, 32).

In addition to the impact of pathologies, one of the difficul-
ties associated with in vitro oxidation methodology is the
large interindividual variation in response that is observed
and that can be explained only partially by environmental fac-
tors, such as diet or the endogenous antioxidant concentra-
tions (20). Further, the role of genetic factors in the determi-
nation of this variability is largely unknown (27, 51).
Concurrently, although the influence of acute aerobic exer-
cise on markers of oxidant stress and lipid peroxidation is be-
lieved to depend on its intensity and duration (28, 42, 50), the
impact of exercise training on the association between the
usual determinants of response and the oxidation markers is
unknown. The objective of the current study was to search, in
a first step, for indications of a familial component to the in-
terindividual variability of the susceptibility or resistance of
LDL and erythrocytes to in vitro oxidation in healthy women
and men and, second, to evaluate the influence of an exercise-
training program on these measures.

METHODS

Sample

This satellite study includes members of 28 two-
generation nuclear families (both biological parents and at
least three biological children), all Caucasians and of French–
Canadian descent, recruited in Quebec City as part of the
HERITAGE Family Study. The overall objective of this multi-
center project was to investigate the effects of regular exer-
cise on several cardiovascular disease and diabetes risk
factors and to determine the role of the genotype in cardio-
vascular, metabolic, and hormonal responses to endurance
exercise training. The specific aims, design, recruitment cri-
teria, and measurement protocols of this study have been re-
ported previously (8, 38). The Quebec City subjects were
healthy, sedentary, and capable of undertaking and complet-
ing an exercise-training program. The participants were re-
quired to be between ages 16–65 years (16–40 years for chil-
dren, and �65 years for parents). They were submitted to
extensive physical and biological evaluation both before and
after the physical training period. Consequently, volunteers
acted as their own controls.

Exercise training program

The training protocol is thoroughly outlined in Bouchard
et al. (8). Briefly, each individual trained on a cycle ergome-
ter in the laboratory under supervision three times a week for
20 weeks. The intensity and duration of exercise were ad-
justed for each individual every 2 weeks so that each partici-
pant was working at a heart rate associated with 75% of their
maximum baseline oxygen uptake for 50 min at the last 6
weeks of training. The power output was adjusted automati-

cally in the cycle ergometers to meet the designed heart rate
response to exercise training. All training sessions were su-
pervised on site, and adherence to the protocol was strictly
monitored (1).

Blood sampling and measures

Fasting blood samples were drawn at the Laval University
Medical Center in Quebec City and prepared according to a
standard protocol. For women, samples were obtained during
the early follicular phase. Plasma lipid, lipoprotein, apolipo-
protein B concentrations, and LDL particle size were mea-
sured in the lipid core laboratory at the Lipid Research Center
by standard procedures as described (38, 45). Routine bio-
chemistry was performed at the Medical Center Central Lab-
oratory. For the lipid oxidation study, plasma and blood cells
were separated by centrifugation at 4°C, cells were washed
with saline (NaCl 0.15 M) and the samples were shipped
within 2 h of drawing to the Hyperlipidemia and Atheroscle-
rosis Research Laboratory of the Clinical Research Institute
of Montreal. Immediately upon reception of the samples, the
plasma and the blood cells were processed as described
below.

Lipid oxidation study

LDL was isolated by sequential ultracentrifugation of
plasma between densities 1.019 and 1.063 g/mL, dialyzed, and
kept under nitrogen at 4°C in the dark until analysis (39). After
protein measurement, with bovine albumin as the standard
(29), LDL was filtered through a disposable 14-cm desalting
column (Econo-Pac 10 DG, Bio-Rad, Mississauga, Ontario,
Canada) to remove the ethylenediamine tetraacetate (EDTA)
just before the oxidation experiments (within 3 days of ultra-
centrifugation). EDTA-free LDL (100 µg protein/mL PBS) was
oxidized with 2 µmol/L CuSO4. Monitoring of the production
of conjugated dienes and determination of the lag time and
propagation rate were done essentially as described (39). The
intra-assay coefficients of variation (CVs) were determined
from triplicate analyses of five samples performed on five dif-
ferent days and found to be 5.3 ± 2.9% for lag time and 6.0 ±
3.9% for propagation rate. The between-assay CVs for lag time
and propagation rate were 5.2% and 9.1%, respectively.

The in vitro resistance of intact red blood cells to oxida-
tion was evaluated with 2,2�-azobis (2-amidinopropane) di-
hydrochloride (AAPH, Spiral, Dijon, France), a free radical
generator. Isolated blood cells were prepared as described
previously (32) and incubated with increasing AAPH con-
centrations (40–260 mmol/L) at 37°C for 150 min. After
centrifugation, the absorbance of the supernatant fluid
(index of hemolysis) was measured at 405 nm with a mi-
croplate reader (Bio-Tek Instruments, Inc., Burlington, VT).
The AAPH concentration corresponding to 50% hemolysis
(C50-AAPH in mmol/L) was evaluated with Prism software
(GraphPad Inc., San Diego, CA) and is interpreted as the
erythrocyte resistance to free radical attack. The intra- and
between-assay CVs are 2.2% (n = 6) and 5.4% (n = 7), re-
spectively. Total plasma thiobarbituric acid-reactive sub-
stances (TBARS) were measured with a spectrophotometric
assay (32); results are expressed as nanomoles per liter of
malondialdehyde (MDA) equivalents per milliliter of plasma
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after use of the molar extinction coefficient for MDA of 
�234 nm = 1.56 � 105 M�1 cm�1.

Fatty acid analysis

After extraction with chloroform/methanol (2:1, vol/vol),
the thin-layer-chromatography-isolated plasma phospholipids
(PL) were transmethylated with 14% boron trifluoride in
methanol at 100°C for 90 min under a N2 atmosphere in ac-
cordance with the protocol of Morrison and Smith (35). The
fatty acid-methyl esters were injected into a gas chromato-
graph (HP-6890; Hewlett–Packard, Palo Alto, CA) equipped
with a 0.25 mm � 30 m Innowax capillary column
(Hewlett–Packard, Mississauga, Ont.) and a flame ionization
detector, with helium as the carrier gas. Calibration and peak
identification were performed using reference fatty acids
(Nu-Chek) and results are expressed as percentages of the
sum of all identified peaks.

Antioxidants and aminothiols

Plasma �-tocopherol, �-carotene, and retinol concentra-
tions were determined by HPLC (3, 46). Concentrations of
plasma total homocysteine (tHcy), cysteine, cysteinyl glycine,
and glutathione (oxidized and reduced forms: GSSG + GSH)
were also measured by HPLC as described (17). Erythrocyte
glutathione peroxidase (GSH-Px) activity was determined by
a spectrophotometric assay, with the use of a commercial kit
(Ransel, Randox Laboratories, Mississauga, Ontario, Canada);
results are expressed as Units per gram of hemoglobin.

Statistical analyses

Descriptive analyses were carried out, either separately in
the four subgroups (fathers, mothers, sons, and daughters), or
by generation or gender, using the SAS software (SAS Institute
Inc, Cary, NC). The homogeneity of each variable mean among
subgroups was tested by analysis of variance (ANOVA) (43).
The contribution of each trait (independent variables) to the
prediction of variability of measures of oxidation (dependent
variables) was evaluated by simple regression analysis: kinetics

of LDL oxidation (lag time and propagation rate), erythro-
cyte resistance to hemolysis following free radical attack, and
plasma TBARS. The predictors of measures of oxidation were
first identified by considering each independent trait separately
to establish whether it made a moderately significant (p � 0.10)
contribution to variability in at least two of the four subgroups.
In a second step, a backward stepwise regression analysis was
carried out for each measure of oxidation on the pooled sample,
to select the combination of the independent traits identified
in step 1 that predicted significant amounts of variation. The
threshold criterion for exclusion from the regression model was
taken to be p > 0.10. Next, the contribution of familial aggre-
gation to the variation in each measure of oxidation was esti-
mated using ANOVA and variance components-based methods.
The ANOVA model was used to derive an F-ratio, which com-
pares the between-family with the within-family variances
and thereby provides an estimate of the familial resemblance.
A variance components-based method as implemented in the
QTDT software package was used to estimate the phenotypic
variance due to polygenic and nonshared environmental factors
(Center for Statistical Genetics, http://www.sph.umich.edu/esg/
abecasis/QTDT/). The polygenic variance reflects both genetic
and shared environmental sources of variance. Maximal heri-
tability of the trait was expressed as the proportion of total vari-
ance explained by the polygenic variance. Paired t tests were
used to assess differences between variables measured before
and after the exercise-training program. Correlations are re-
ported as Pearson’s r coefficients. 

RESULTS

The baseline biological characteristics of the participants are
presented by family membership in Table 1. The ages varied
from 43 to 62 and from 17 to 36 years in parents and children,
respectively. Parents had significantly higher values than their
children for biological measurements (p < 0.001), except for
serum albumin, which was higher in children (p < 0.05) and
serum uric acid and high density lipoprotein (HDL) cholesterol,

TABLE 1. BASELINE BIOLOGICAL CHARACTERISTICS OF PARTICIPANTS BY FAMILY MEMBERSHIP

Variables* Fathers Mothers Sons Daughters p†

Number of subjects 28 25 40 53
Age (years) 51.2 ± 4.1 49.8 ± 3.2 21.7 ± 4.0 22.5 ± 4.9 0.0001
BMI (kg/m2) 26.9 ± 3.6 26.2 ± 3.4 24.1 ± 4.1 22.2 ± 3.7 0.0001
Serum glucose (mmol/L) 4.99 ± 0.58 4.83 ± 0.48 4.67 ± 0.40 4.53 ± 0.36 0.0001
Serum albumin (g/L) 43.9 ± 2.9 41.0 ± 3.3 45.7 ± 3.6 42.5 ± 3.5 0.0001
Serum uric acid (µmol/L) 358 ± 65 255 ± 48 344 ± 55 246 ± 49 0.0001
Serum creatinine

(µmol/L) 89 ± 10 69 ± 7 84 ± 9 72 ± 8 0.0001
LDL

Cholesterol (mmol/L) 3.70 ± 1.01 3.28 ± 0.77 2.57 ± 0.61 2.67 ± 0.77 0.0001
apoB (mg/dL) 97 ± 24 84 ± 22 68 ± 16 69 ± 21 0.0001
Particle size (nm) 25.84 ± 0.88 25.97 ± 0.76 26.05 ± 0.72 26.01 ± 0.82 NS

HDL�cholesterol 1.02 ± 0.19 1.27 ± 0.26 1.01 ± 0.18 1.18 ± 0.26 0.0001

*Values are means ± S.D.
†Significance of the differences among subgroups by ANOVA.
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which did not differ significantly between generations. Male
subjects (fathers and sons together) had higher values (p < 0.05)
than females (mothers and daughters) for every biological vari-
able except HDL cholesterol (p < 0.001). No significant differ-
ences in LDL particle size were noted among subgroups.

Table 2 shows the lipid oxidation parameters, as well as
plasma aminothiols and antioxidants in the four subgroups at
baseline. No significant differences among groups were found
for the measures of LDL or erythrocyte oxidation and plasma
TBARS concentrations. However, there was a gender differ-
ence for plasma tHcy, men having higher values than women
(p < 0.001), whereas plasma glutathione was higher in chil-
dren than in parents (p < 0.05). Plasma �-tocopherol, �-
carotene (p < 0.001), and retinol levels (p < 0.005) were found
to be higher in parents than in children, as was the activity of
erythrocyte GSH-Px (p < 0.05). This enzyme was higher in
women than in men (p < 0.005). The plasma PL fatty acid pro-
file was determined in subjects for whom LDL oxidation data
were available for use in regression analyses (data not shown).

Among the 41 independent variables (physical and biochem-
ical measures) included in the simple regression analysis, the
significant predictors were entered into a backward stepwise
regression analysis of the pooled sample. The significant posi-
tive and negative influences were LDL cholesterol (-), plasma
�-tocopherol (+), serum uric acid (+) and plasma PL oleic acid
(+) and they contributed 31.6% (adjusted R2 � 100; p < 0.001)

126 BLACHE ET AL.

of the variance in LDL oxidation lag time. Plasma glutathione
(+) and PL eicosapentaenoic acid (EPA) (�) (7.8%; p < 0.01)
were retained in the model for propagation rate. Plasma glu-
tathione (+) and plasma �-tocopherol (+) were respectively
significant predictors for hemolysis (6.8%; p < 0.01) and for
TBARS (2.1%; p < 0.05). As shown in Table 3, all four in vitro
oxidation parameters were characterized by significant familial
aggregation. The baseline traits showed 2–3 times more vari-
ance between families than within families, and maximal heri-
tability estimates ranged from 30.8% to 42.5%.

The influence of 20 weeks of exercise training on measures
of oxidation is shown in Table 4. In both women and men,
LDL oxidation changes were characterized by a large in-
terindividual variability and were not significantly different.
In this group of 71 subjects, 4 men and 6 women reported cig-
arette smoking. Their exclusion did not have any impact on
the results. Conversely, the rate of resistance to hemolysis in-
creased significantly with training in women but not in men,
while plasma TBARS concentrations did not change signifi-
cantly (Table 4). Whereas exercise training induced several
significant changes in biological markers, evaluation of the
changes in resistance to hemolysis showed a gender-depen-
dent pattern in the correlates of this parameter (Table 5). In
women, the change in plasma �-tocopherol relative to base-
line was the only significant correlate of hemolysis change,
whereas in men, HDL cholesterol (+) and erythrocyte GSH-

TABLE 2. LIPID OXIDATION PARAMETERS, PLASMA AMINOTHIOL CONCENTRATIONS, AND PLASMA

OR ERYTHROCYTE ANTIOXIDANTS BY FAMILY MEMBERSHIP AT BASELINE

Variables* Fathers Mothers Sons Daughters p†

LDL oxidation
Lag time (min) 72 ± 26 64 ± 29 70 ± 23 62 ± 24 NS

(20)‡ (20) (30) (36)
Propagation rate 8.5 ± 2.5 9.4 ± 3.4 9.0 ± 2.7 8.7 ± 2.1 NS

(nmol/mg LDL (20) (20) (30) (36)
protein/min)

Erythrocyte resistance to hemolysis
C50-AAPH (mmol/L) 74.8 ± 13.9 81.6 ± 17.7 75.0 ± 12.6 74.7 ± 13.8 NS

(25) (24) (38) (45)
Plasma TBARS 1.93 ± 0.55 1.90 ± 0.70 1.77 ± 0.62 2.09 ± 0.89 NS

(nmol MDA/mL) (28) (25) (40) (53)
Plasma aminothiols (µmol/L)

Total homocysteine 9.4 ± 2.1 7.8 ± 2.6 8.9 ± 3.7 7.7 ± 3.7 0.1100
(tHcy) (28) (25) (40) (53)

Total glutathione 4.1 ± 1.2 4.3 ± 1.5 5.1 ± 1.7 4.4 ± 1.4 0.0285
(GSSG + GSH) (18) (25) (40) (53)

Plasma antioxidant vitamins (µg/L)
�-Tocopherol (� 103) 13.6 ± 4.9 13.1 ± 5.1 8.1 ± 2.3 8.85 ± 2.1 0.0001

(28) (25) (40) (53)
�-Carotene 187 ± 89 255 ± 138 128 ± 71 161 ± 100 0.0001

(28) (25) (40) (53)
Retinol 655 ± 114 550 ± 110 552 ± 125 512 ± 138 0.0001

(28) (25) (40) (53)
Erythrocyte antioxidant enzyme

Glutathione peroxidase 59.6 ± 15.9 61.9 ± 16.3 50.3 ± 12.8 58.6 ± 15.3 0.0107
(GSH-Px) (U/g (24) (24) (39) (45)

hemoglobin)

*Values are means ± SD; †significance of the differences among subgroups by ANOVA; ‡Number of samples tested.
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Px (-) differences showed the strongest associations with pre-
dominance of the glutathione system. 

Further scrutiny of results uncovered the influence of
smoking in the response to exercise (Fig. 1). While erythro-
cyte resistance to hemolysis increased in women nonsmokers,
a decrease was observed in those who smoked. A similar pat-
tern was observed in men, although changes in nonsmokers
were at the limit of statistical significance.

DISCUSSION

One of our goals in this study was to search for indications
of genetic contribution to the widely observed interindividual

EXERCISE, SMOKING, AND OXIDANT STRESS 127

variation in measures of ex vivo antioxidant defense, as as-
sessed by LDL oxidation and free radical-induced erythro-
cyte hemolysis. Our first step to this end was to identify bio-
logical and environmental influences and to evaluate their
capacity to predict trait variability in the lipid oxidation mea-
sures. We were successful in explaining a significant portion
of LDL oxidation variability and our findings were compati-
ble with those in other reports and were biologically relevant
(12, 16, 47). 

Apart from LDL components, several factors (some in the
circulation, others in blood cells) are involved in the promo-
tion or inhibition of oxidation in vivo (25, 37). Our study pro-
vided quantitative data on a large number of biological vari-
ables (see Results), including thiols, uric acid, albumin, and
erythrocyte glutathione peroxidase activity. The latter was not
correlated with the oxidation parameters at baseline; however,
plasma glutathione levels made a significant contribution to
variability in oxidation for both LDL and erythrocytes. Simi-
larly, plasma retinol and �-carotene levels were also unexpect-
edly not correlated with oxidation parameters, although a re-
cent study has reported that serum retinol and �-carotene are
mostly under genetic control in healthy families (23).

TABLE 3. FAMILIAL AGGREGATION OF THE OXIDATION

PARAMETERS IN THE SEDENTARY STATE (BASELINE) AND THEIR

RESPONSES TO ENDURANCE TRAINING (RESPONSE)

ANOVA

F p value h2

LDL oxidation
Lag time

Baseline (106) 3.12 <0.0001 0.380
response (69) 2.97 0.001 0.841

Propagation
Baseline (106) 2.02 0.009 0.308
Response (70) 2.12 0.0147 0.444

Erythrocyte resistance to hemolysis
Baseline (132) 3.06 <0.0001 0.360
Response (106) 2.08 0.0081 0.354

Plasma TBARS
Baseline (142) 3.19 <0.0001 0.425
Response (137) 3.15 <0.0001 0.514

Plasma glutathione
Baseline (145) 2.56 0.0003 0.444
Response (142) 3.20 <0.0001 0.460

RBC GSH-Px
Baseline (131) 6.09 <0.0001 1.000
Response (109) 1.04 0.424 0.002

F-value is the ratio of between-family and within-family vari-
ances from the ANOVA model. Maximal heritability estimate
(h2) is derived from variance components model and reflects the
proportion of total variance due to polygenic variance.

TABLE 4. EFFECT OF 20 WEEKS OF EXERCISE TRAINING ON OXIDATION PARAMETERS*

LDL oxidation Hemolysis TBARS

Porpagation rate
Lag time (nmol/mg LDL C50-AAPH†

N (min) prot./min) n (mmol/L) n nmol MDA/mL‚‡

Women 35 3.5 ± 39.5 0.7 ± 4.9 54 4.9 ± 16.7§ 78 �0.13 ± 1.0
Men 36 8.8 ± 38.7 �0.2 ± 2.8 52 2.3 ± 15.4 68 0.05 ± 0.8

*Numbers are mean differences from baseline in absolute values ± SD.
†Concentration of 2,2’-azobis (2-amidinopropane) dihydrochloride (AAPH) corresponding to 50% hemolysis.
‡MDA: malondialdehyde equivalents.  
§Significance of the difference from baseline: p < 0.05.

FIG. 1. Influences of smoking on changes in hemolysis rate
after 20 weeks of training. Data are expressed as mean dif-
ferences in percentages (�%) ± SEM by gender. Numbers are:
42 women nonsmokers and 12 smokers; 45 men nonsmokers
and 7 smokers. *p = 0.0001; †p = 0.0591
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Cigarette smoking, which is recognized as an important
risk factor for cardiovascular disease and is known to con-
tribute to oxidative stress (4, and reviewed in Ref. 15), did not
have a significant impact on LDL oxidation measures in our
sample. The generally expected negative effect on the resis-
tance of LDL to oxidative stress has not been consistently ob-
served in healthy individuals (49). 

Ours is the first study to have evaluated the interindividual
variability in erythrocyte response to free radical attack. We
found an association of plasma glutathione with the hemoly-
sis rate, both as a predictor of variability at baseline and as a
correlate of change (Table 5). Other elements, not measured
in this study, are directly or indirectly involved in hemolytic
reactions and may play an important role in the reaction to
oxidative stress (25, 33, 37). 

All the measures of oxidation showed significant familial
aggregation in the sedentary state. This observation could in
part be due to shared environmental factors and could also
underscore the influence of genetic effects. A Finnish study
of 15 families, including parents and male twins 16–18 years
of age, has considered the concept of “Familial aggregation”
in the response of LDL to oxidation (27). The authors con-
cluded that inherited factors contribute to interindividual
variability in the oxidative modification of LDL. In another
study, total plasma antioxidant activity (TAS) was determined
in 1,337 members of 40 families (Mexican Americans in the
San Antonio Family Heart Study) (51). TAS levels were found
to be under genetic control: the additive effects of genes ex-
plained around 51% of the phenotypic variance in TAS, after
adjustment for several biological and environmental factors.
However, cellular antioxidants are not taken into considera-
tion in the TAS procedure, which essentially accounts for cir-
culating antioxidants mainly ascribed to albumin (reviewed in
Ref. 9). Despite differences in methodology, the above results
add weight to our own observations and suggest genetic in-
volvement in the control of the redox system.

In our study, we observed no significant exercise training-
induced changes in the response of LDL to copper-induced
oxidation, in the presence of a persistent, large interindivid-
ual variability. The influence of exercise on oxidative stress
has been abundantly studied (11, 19, 42, 48). After a 16-week
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training period, Elosua et al. (19) observed a significant de-
crease in LDL oxidation susceptibility with no change in �-
tocopherol, whereas in our conditions, we found significant
increases in plasma tocopherol in men and women (Table 5).
These divergent results might be explained by different proto-
cols and measures. Conversely, we found that the resistance
to hemolysis was improved by regular exercise, only in
women, and was associated with markers of positive response
in a gender-dependent manner. Increase in HDL cholesterol
is a known benefit from endurance training and has been re-
ported elsewhere in the context of the HERITAGE Family
Study (14). It is noteworthy that the increase in HDL choles-
terol, which was significant in both women and men, was as-
sociated with hemolysis resistance only in men. In women,
the observed relative increase in vitamin E could be due to
mobilization from tissue storage to plasma circulation, as
there was no indication of increased intake.

The negative correlation between changes in the resistance
to hemolysis and changes in GSH-Px noted in men may ap-
pear surprising. It should be emphasized, however, that the
mean activity of GSH-Px did not change significantly during
the study in either women or men. Further, it is possible that
the observed increase in plasma glutathione (total), indicative
of an increased physical activity represents an increase in ox-
idized glutathione (GSSG) more than in the reduced form
(GSH). The thiol redox cycle is part of an important antioxi-
dant defense system that includes several other agents, such
as vitamins E and C (41). We suggest that the exercise-stimu-
lated interaction of these agents was gender dependent in this
study. Such a biological phenomenon has been documented
in several situations (30, 31, 40), but has not heretofore been
reported in the evaluation of response to exercise and oxidant
stress. This aspect warrants further evaluation.

Smoking negatively affected erythrocyte resistance to oxi-
dation after exercise training. While erythrocytes in smokers
have been found to be more susceptible to in vitro peroxida-
tion, probably because of lower vitamin content compared to
nonsmokers (6, 10), the current study demonstrates that
smoking counteracts the beneficial effect of exercise in the
response to oxidant stress (Fig. 1). The increased resistance to
hemolysis observed in nonsmokers was replaced by an in-

TABLE 5. CHANGES IN BIOLOGICAL MARKERS AND CORRELATES OF HEMOLYSIS RESISTANCE AFTER 20 WEEKS OF EXERCISE

TRAINING

Women Men
(n = 54) (n = 52)

Variables �% * p r † p � % * p r † p

Uric acid 3.4 0.0944 �0.21 NS 5.5 0.0120 �0.23 0.0937
Albumin �3.6 0.0005 0.04 NS �2.4 0.0245 �0.05 NS
Plasma total glutathione 9.4 0.0335 �0.04 NS 18.1 0.0135 0.28 0.0432
Plasma �-tocopherol 8.2 0.0179 0.48 0.0002 4.1 NS 0.03 NS
RBC glutathione peroxidase �0.6 NS �0.14 NS �0.3 NS �0.40 0.0033

(GSH-Px)
HDL cholesterol 5.0 0.0146 0.01 NS 4.1 0.0031 0.50 0.0002
Maximal oxygen uptake 17.6 0.0001 �0.13 NS 13.6 0.0001 �0.04 NS

*Mean percent differences (�%) from baseline.
†Pearson correlation coefficients of changes.
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creased susceptibility to oxidation in the smokers of both
sexes. 

In conclusion, this study of healthy adults belonging to 28
unrelated pedigrees has shown that the important interindi-
vidual variability associated with the response to in vitro ox-
idative stress is due, not only to endogenous biological fac-
tors, but also to shared familial factors that may include
genetic effects. Exercise training did not modify the resis-
tance of LDL to in vitro oxidation, but there was improve-
ment in the resistance of erythrocytes to free radical attack,
probably through an improvement in the antioxidant status.
This study illustrates yet another detrimental effect of smok-
ing and emphasizes the importance of context in the evalua-
tion of oxidant stress and exercise. 
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AAPH, 2,2�-azobis (2-amidinopropane) dihydrochloride;
BMI, body massindex; EDTA, ethylenediamine tetraacetate;
EPA, eicosapentaenoic acid; GSH-Px, glutathione peroxi-
dase; GSH, reduced form of glutathione; GSSG, oxidized
form of glutathione; HDL, high density lipoproteins; LDL,
low density lipoproteins; MDA, alondialdehyde; PL, phos-
pholipids; RBC, red blood cells; ROS, reactive oxygen
species; TAS, total antioxidant activity (of plasma); TBARS,
thiobarbituric acid-reactive substances; tHcy, total homocys-
teine; TLC, thin layer chromatography.
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