79,323 research outputs found
A three dimensional finite element model of wind effects upon higher harmonics of the internal tide.
A non-linear three dimensional unstructured grid model of the M2 tide in the shelf edge area off the west coast of Scotland is used to examine the spatial distribution of the M2 internal tide and its higher harmonics in the region. In addition the spatial variability of the tidally induced turbulent kinetic energy and associated mixing in the area are considered. Initial calculations involve only tidal forcing, although subsequent calculations are performed with up-welling and down-welling favourable winds in order to examine how these influence the tidal distribution (particularly the higher harmonics) and mixing in the region. Both short and long duration winds are used in these calculations. Tidal calculations show that there is significant small scale spatial variability particularly in the higher harmonics of the internal tide in the region. In addition turbulence energy and mixing exhibit appreciable spatial variability in regions of rapidly changing topography, with increased mixing occurring above seamounts. Wind effects significantly change the distribution of the M2 internal tide and its higher harmonics, with appreciable differences found between up- and down-welling winds, and long and short duration winds due to differences in mixing and the presence of wind induced flows. The implications for model validation, particularly in terms of energy transfer to higher harmonics, and mixing are briefly discussed
Nonparametric Regression, Confidence Regions and Regularization
In this paper we offer a unified approach to the problem of nonparametric
regression on the unit interval. It is based on a universal, honest and
non-asymptotic confidence region which is defined by a set of linear
inequalities involving the values of the functions at the design points.
Interest will typically centre on certain simplest functions in that region
where simplicity can be defined in terms of shape (number of local extremes,
intervals of convexity/concavity) or smoothness (bounds on derivatives) or a
combination of both. Once some form of regularization has been decided upon the
confidence region can be used to provide honest non-asymptotic confidence
bounds which are less informative but conceptually much simpler
Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD
We have calculated the coefficient functions for the structure functions F_2,
F_L and F_3 in nu-nubar charged-current deep-inelastic scattering (DIS) at the
third order in the strong coupling alpha_s, thus completing the description of
unpolarized inclusive W^(+-) exchange DIS to this order of massless
perturbative QCD. In this brief note, our new results are presented in terms of
compact approximate expressions that are sufficiently accurate for
phenomenological analyses. For the benefit of such analyses we also collect, in
a unified notation, the corresponding lower-order contributions and the flavour
non-singlet coefficient functions for nu+nubar charged-current DIS. The
behaviour of all six third-order coefficient functions at small Bjorken-x is
briefly discussed.Comment: 6 pages, LaTeX (PoS style), 1 eps-figure. Fortran files of the main
results available with the source. To appear in the proceedings of `DIS
2016', DESY, Hamburg (Germany), April 201
Infrared diode laser spectroscopy of the fundamental band of NF(a1Δ)
Thirty-one lines of the fundamental vibration–rotation band of the NF free radical in its a 1 state have been detected in absorption near 8.6 µm using a tunable infrared diode laser. Linewidths were Doppler limited and several transitions were accompanied by resolved hyperfine structure due to fluorine and nitrogen nuclear moments. Wave number calibration using accurately determined N2O lines yielded v0 = 1165.952±0.001 cm^−1 for the band center. Rotational and centrifugal distortion constants for both v = 0 and 1 states have also been determined
Shifts in hexapod diversification and what Haldane could have said
Data on species richness and taxon age are assembled for the extant hexapod orders (insects and their six-legged relatives). Coupled with estimates of phylogenetic relatedness, and simple statistical null models, these data are used to locate where, on the hexapod tree, significant changes in the rate of cladogenesis (speciation-minus-extinction rate) have occurred. Significant differences are found between many successive pairs of sister taxa near the base of the hexapod tree, all of which are attributable to a shift in diversification rate after the origin of the Neoptera (insects with wing flexion) and before the origin of the Holometabola (insects with complete metamorphosis). No other shifts are identifiable amongst supraordinal taxa. Whilst the Coleoptera have probably diversified faster than either of their putative sister lineages, they do not stand out relative to other closely related clades. These results suggest that any Creator had a fondness for a much more inclusive clade than the Coleoptera, definitely as large as the Eumetabola (Holometabola plus bugs and their relatives), and possibly as large as the entire Neoptera. Simultaneous, hence probable causative events are discussed, of which the origin of wing flexion has been the focus of much attention
Initial axon growth rate from embryonic sensory neurons is correlated with birth date
Axon growth rate from different populations of sensory neurons is correlated with the distance they have to grow to reach their targets in development: neurons with more distant targets extend axons at intrinsically faster rates. With growth of the embryo, later‐born neurons within each population have further to extend their axons to reach their targets than early‐born neurons. Here we examined whether the axon growth rate is related to birth date by studying the axon growth from neurons that differentiate in vitro from precursor cells isolated throughout the period of neurogenesis. We first showed that neurons that differentiated in vitro from different precursor cell populations exhibited differences in axon growth rate related to in vivo target distance. We then examined the axon growth rate from neurons that differentiate from the same precursor population at different stages throughout the period of neurogenesis. We studied the epibranchial placode precursors that give rise to nodose ganglion neurons in the chicken embryo. We observed a highly significant, threefold difference in axon growth rate from neurons that differentiate from precursor cells cultured early and late during the period of neurogenesis. Our findings suggest that intrinsic differences in axon growth rate are correlated with the neuronal birth date
Church Without Walls? Social Media as Ritual Carrier for Megachurch Congregants in the Renegotiation of Ritual Space
The desire for spiritual experiences, particularly religious rituals, further increased during the pandemic. Through a netnographic examination, this study explains how consumer-congregants of a London-based megachurch renegotiated their spiritual experience and ritual space to create new ‘living-room’ and ‘cyber’ rituals, using the social media platforms as ritual carriers
Recommended from our members
A miniature UV-VIS spectrometer for the surface of Mars
A miniature spectrometer is in the process of development for a future Mars mission, to measure the UV-VIS spectrum encountered at the martian surface. With an intended mass of ~100 g, the spectrometer is planned as part of the ESA ExoMars mission
Molecular basis of gap junctional communication in the CNS of the leech Hirudo medicinalis
Gap junctions are intercellular channels that allow the passage of ions and small molecules between cells. In the nervous system, gap junctions mediate electrical coupling between neurons. Despite sharing a common topology and similar physiology, two unrelated gap junction protein families exist in the animal kingdom. Vertebrate gap junctions are formed by members of the connexin family, whereas invertebrate gap junctions are composed of innexin proteins. Here we report the cloning of two innexins from the leech Hirudo medicinalis. These innexins show a differential expression in the leech CNS: Hm-inx1 is expressed by every neuron in the CNS but not in glia, whereas Hm-inx2 is expressed in glia but not neurons. Heterologous expression in the paired Xenopus oocyte system demonstrated that both innexins are able to form functional homotypic gap junctions. Hm-inx1 forms channels that are not strongly gated. In contrast, Hm-inx2 forms channels that are highly voltage-dependent; these channels demonstrate properties resembling those of a double rectifier. In addition, Hm-inx1 and Hm-inx2 are able to cooperate to form heterotypic gap junctions in Xenopus oocytes. The behavior of these channels is primarily that predicted from the properties of the constituent hemichannels but also demonstrates evidence of an interaction between the two. This work represents the first demonstration of a functional gap junction protein from a Lophotrochozoan animal and supports the hypothesis that connexin-based communication is restricted to the deuterostome clade
The effect of stellar-mass black holes on the structural evolution of massive star clusters
We present the results of realistic N-body modelling of massive star clusters
in the Magellanic Clouds, aimed at investigating a dynamical origin for the
radius-age trend observed in these systems. We find that stellar-mass black
holes, formed in the supernova explosions of the most massive cluster stars,
can constitute a dynamically important population. If a significant number of
black holes are retained (here we assume complete retention), these objects
rapidly form a dense core where interactions are common, resulting in the
scattering of black holes into the cluster halo, and the ejection of black
holes from the cluster. These two processes heat the stellar component,
resulting in prolonged core expansion of a magnitude matching the observations.
Significant core evolution is also observed in Magellanic Cloud clusters at
early times. We find that this does not result from the action of black holes,
but can be reproduced by the effects of mass-loss due to rapid stellar
evolution in a primordially mass segregated cluster.Comment: Accepted for publication in MNRAS Letters; 2 figures, 1 tabl
- …