40,844 research outputs found
Self-consistent equilibrium of a two-dimensional electron system with a reservoir in a quantizing magnetic field: Analytical approach
An analytical approach has been developed to describe grand canonical
equilibrium between a three dimensional (3D) electron system and a two
dimensional (2D) one, an energy of which is determined self-consistently with
an electron concentration. Main attention is paid to a Landau level (LL)
pinning effect. Pinning means a fixation of the LL on a common Fermi level of
the 2D and the 3D systems in a finite range of the magnetic field due to an
electron transfer from the 2D to the 3D system. A condition and a start of LL
pinning has been found for homogeneously broadened LLs. The electronic transfer
from the 3D to the 2D system controls an extremely sharp magnetic dependency of
an energy of the upper filled LL at integer filling of the LLs. This can cause
a significant increase of inhomogeneous broadening of the upper LL that was
observed in recent local probe experiments.Comment: 12 pages, 2 figures, revtex
Coral symbiodinium community composition across the Belize Mesoamerican barrier reef system is influenced by host species and thermal variability
Accepted manuscrip
Stellar and Molecular Gas Kinematics of NGC1097: Inflow Driven by a Nuclear Spiral
We present spatially resolved distributions and kinematics of the stars and
molecular gas in the central 320pc of NGC1097. The stellar continuum confirms
the previously reported 3-arm spiral pattern extending into the central 100pc.
The stellar kinematics and the gas distribution imply this is a shadowing
effect due to extinction by gas and dust in the molecular spiral arms. The
molecular gas kinematics show a strong residual (i.e. non-circular) velocity,
which is manifested as a 2-arm kinematic spiral. Linear models indicate that
this is the line-of-sight velocity pattern expected for a density wave in gas
that generates a 3-arm spiral morphology. We estimate the inflow rate along the
arms. Using hydrodynamical models of nuclear spirals, we show that when
deriving the accretion rate into the central region, outflow in the disk plane
between the arms has to be taken into account. For NGC1097, despite the inflow
rate along the arms being ~1.2Msun/yr, the net gas accretion rate to the
central few tens of parsecs is much smaller. The numerical models indicate that
the inflow rate could be as little as ~0.06Msun/yr. This is sufficient to
generate recurring starbursts, similar in scale to that observed, every
20-150Myr. The nuclear spiral represents a mechanism that can feed gas into the
central parsecs of the galaxy, with the gas flow sustainable for timescales of
a Gigayear.Comment: accepted by Ap
Shock Waves in Nanomechanical Resonators
The dream of every surfer is an extremely steep wave propagating at the
highest speed possible. The best waves for this would be shock waves, but are
very hard to surf. In the nanoscopic world the same is true: the surfers in
this case are electrons riding through nanomechanical devices on acoustic waves
[1]. Naturally, this has a broad range of applications in sensor technology and
for communication electronics for which the combination of an electronic and a
mechanical degree of freedom is essential. But this is also of interest for
fundamental aspects of nano-electromechanical systems (NEMS), when it comes to
quantum limited displacement detection [2] and the control of phonon number
states [3]. Here, we study the formation of shock waves in a NEMS resonator
with an embedded two-dimensional electron gas using surface acoustic waves. The
mechanical displacement of the nano-resonator is read out via the induced
acoustoelectric current. Applying acoustical standing waves we are able to
determine the anomalous acoustocurrent. This current is only found in the
regime of shock wave formation. We ontain very good agreement with model
calculations.Comment: 14 Pages including 4 figure
Public Involvement in research within care homes: Benefits and challenges in the APPROACH Study
Public involvement in research (PIR) can improve research design and recruitment. Less is known about how PIR enhances the experience of participation and enriches the data collection process. In a study to evaluate how UK care homes and primary health care services achieve integrated working to promote older people’s health, PIR was integrated throughout the research processes. Objectives This paper aims to present one way in which PIR has been integrated into the design and delivery of a multi-site research study based in care homes. Design A prospective case study design, with an embedded qualitative evaluation of PIR activity. Setting and Participants Data collection was undertaken in six care homes in three sites in England. Six PIR members participated: all had prior personal or work experience in care homes. Data Collection Qualitative data collection involved discussion groups, and site-specific meetings to review experiences of participation, benefits and challenges, and completion of structured fieldwork notes after each care home visit. Results PIR members supported: recruitment, resident and staff interviews and participated in data interpretation. Benefits of PIR work were resident engagement that minimised distress and made best use of limited research resources. Challenges concerned communication and scheduling. Researcher support for PIR involvement was resource intensive. Discussion and Conclusions Clearly defined roles with identified training and support facilitated involvement in different aspectsPublic Involvement in Research members of the research team: Gail Capstick, Marion Cowie, Derek Hope, Rita Hewitt, Alex Mendoza, John Willmott. Also the involvement of Steven Iliffe and Heather Gag
Parametrizing the time-variation of the "surface term" of stellar p-mode frequencies: application to helioseismic data
The solar-cyle variation of acoustic mode frequencies has a frequency
dependence related to the inverse mode inertia. The discrepancy between model
predictions and measured oscillation frequencies for solar and solar-type
stellar acoustic modes includes a significant frequency-dependent term known as
the surface term that is also related to the inverse mode inertia. We
parametrize both the surface term and the frequency variations for low-degree
solar data from Birmingham Solar-Oscillations Network (BiSON) and medium-degree
data from the Global Oscillations Network Group (GONG) using the mode inertia
together with cubic and inverse frequency terms. We find that for the central
frequency of rotationally split multiplets the cubic term dominates both the
average surface term and the temporal variation, but for the medium-degree case
the inverse term improves the fit to the temporal variation. We also examine
the variation of the even-order splitting coefficients for the medium-degree
data and find that, as for the central frequency, the latitude-dependent
frequency variation, which reflects the changing latitudinal distribution of
magnetic activity over the solar cycle, can be described by the combination of
a cubic and an inverse function of frequency scaled by inverse mode inertia.
The results suggest that this simple parametrization could be used to assess
the activity-related frequency variation in solar-like asteroseismic targets.Comment: 13 pages, 11 figures. Accepted by MNRAS 13 October 201
Cavity-assisted spontaneous emission as a single-photon source: Pulse shape and efficiency of one-photon Fock state preparation
Within the framework of exact quantum electrodynamics in dispersing and
absorbing media, we have studied the quantum state of the radiation emitted
from an initially in the upper state prepared two-level atom in a high-
cavity, including the regime where the emitted photon belongs to a wave packet
that simultaneously covers the areas inside and outside the cavity. For both
continuing atom--field interaction and short-term atom--field interaction, we
have determined the spatio-temporal shape of the excited outgoing wave packet
and calculated the efficiency of the wave packet to carry a one-photon Fock
state. Furthermore, we have made contact with quantum noise theories where the
intracavity field and the field outside the cavity are regarded as
approximately representing independent degrees of freedom such that two
separate Hilbert spaces can be introduced.Comment: 16 pages, 7 eps figures; improved version as submitted to Phys. Rev.
Effective mass theory of monolayer \delta-doping in the high-density limit
Monolayer \delta-doped structures in silicon have attracted renewed interest
with their recent incorporation into atomic-scale device fabrication strategies
as source and drain electrodes and in-plane gates. Modeling the physics of
\delta-doping at this scale proves challenging, however, due to the large
computational overhead associated with ab initio and atomistic methods. Here,
we develop an analytical theory based on an effective mass approximation. We
specifically consider the Si:P materials system, and the limit of high donor
density, which has been the subject of recent experiments. In this case,
metallic behavior including screening tends to smooth out the local disorder
potential associated with random dopant placement. While smooth potentials may
be difficult to incorporate into microscopic, single-electron analyses, the
problem is easily treated in the effective mass theory by means of a jellium
approximation for the ionic charge. We then go beyond the analytic model,
incorporating exchange and correlation effects within a simple numerical model.
We argue that such an approach is appropriate for describing realistic,
high-density, highly disordered devices, providing results comparable to
density functional theory, but with greater intuitive appeal, and lower
computational effort. We investigate valley coupling in these structures,
finding that valley splitting in the low-lying \Gamma band grows much more
quickly than the \Gamma-\Delta band splitting at high densities. We also find
that many-body exchange and correlation corrections affect the valley splitting
more strongly than they affect the band splitting
Notes on Ungava Bay and its vicinity
An overview of the Ungava Bay regionPeriodical covers have been included with many of the digitized articles whether they relate to them or not. Extra pages not part of the article in question may also be present
- …