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Abstract Reef-building corals maintain a symbiotic relation-
ship with dinoflagellate algae of the genus Symbiodinium, and
this symbiosis is vital for the survival of the coral holobiont.
Symbiodinium community composition within the coral host
has been shown to influence a coral’s ability to resist and re-
cover from stress. A multitude of stressors including ocean
warming, ocean acidification, and eutrophication have been
linked to global scale decline in coral health and cover in recent
decades. Three distinct thermal regimes (highTP, modTP, and
lowTP) following an inshore-offshore gradient of declining av-
erage temperatures and thermal variation were identified on the
Belize Mesoamerican Barrier Reef System (MBRS).
Quantitative metabarcoding of the ITS-2 locus was employed
to investigate differences and similarities in Symbiodinium ge-
netic diversity of the Caribbean corals Siderastrea siderea,
S. radians, and Pseudodiploria strigosa between the three ther-
mal regimes. A total of ten Symbiodinium lineages were iden-
tified across the three coral host species. S. siderea was associ-
ated with distinct Symbiodinium communities; however,
Symbiodinium communities of its congener, S. radians and
P. strigosa, were more similar to one another. Thermal regime

played a role in defining Symbiodinium communities in
S. siderea but not S. radians or P. strigosa. Against expecta-
tions, Symbiodinium trenchii, a symbiont known to confer ther-
mal tolerance, was dominant only in S. siderea at one sampled
offshore site and was rare inshore, suggesting that coral thermal
tolerance in more thermally variable inshore habitats is
achieved through alternative mechanisms. Overall, thermal pa-
rameters alone were likely not the only primary drivers of
Symbiodinium community composition, suggesting that envi-
ronmental variables unrelated to temperature (i.e., light avail-
ability or nutrients) may play key roles in structuring coral-algal
communities in Belize and that the relative importance of these
environmental variables may vary by coral host species.
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Introduction

Obligate symbioses, relationships in which two or more or-
ganisms depend on one another for nutrition and survival,
occur globally. Such symbioses are ubiquitous in plants and
algae, i.e., Mycorrhiza [1], lichens [2], or insects, i.e., ants and
bacteria [3]. The effects of climate change are expected to
disrupt proper functioning of many symbioses, including that
of reef-building corals [4–6], whose success depends on the
symbiosis between the coral host and photosynthetic algae of
the genus Symbiodinium [7–9]. Under stressful conditions,
this coral-Symbiodinium relationship breaks down, resulting
in the loss of endosymbiont cells and/or photosynthetic pig-
ments from the coral tissue in a process known as Bcoral
bleaching^ [10]. Coral bleaching is most commonly associat-
ed with thermal stress [11–15] and is predicted to increase in
frequency and severity as the world’s climate continues to
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change [5, 16–21]. Increased thermal stress resulting from
climate change combined with other local stressors such as
eutrophication, habitat destruction, and overfishing has creat-
ed an uncertain future for coral reefs [6, 13, 22]. In the
Caribbean Sea, warming rates are higher than in any other
tropical basin [23, 24] and coral cover has declined by as
much as 80% in recent decades [25]. It has been predicted that
Caribbean coral reefs may suffer biannual bleaching events
within the next 20–30 years [17] and annual bleaching by
2040 [26].

In the face of a changing climate and widespread reef de-
clines, corals will need to rapidly increase their thermal toler-
ance in order to persist in their current form [18, 27]. Coral
thermal tolerance has been shown to be influenced by a coral’s
thermal history, which among other factors includes average
environmental temperature and extent of thermal variability
[28, 29]. On average, corals previously exposed to warmer
temperatures show decreased mortality during bleaching
events [30] and more stable growth patterns [31] compared
with corals exposed to cooler temperatures, which exhibit
greater mortality during heat stress and declining growth rates
with increased temperatures [30, 31]. Exposure to greater dai-
ly thermal variation has also been shown to increase coral
thermal tolerance [32] and has been associated with higher
coral cover and slower mortality rates when compared to reefs
exposed to less thermal variation [33]. Coral thermal tolerance
is also heritable with larvae from parent colonies on lower-
latitude (warmer) reefs showing a 10-fold increase in survival
under heat stress when compared to larvae from cooler reefs
locations [34]. A growing body of evidence suggests that the
coral host plays a significant role in thermal tolerance [35–38];
however, plasticity or specificity of coral-associated
Symbiodinium and bacterial communities has also been shown
to play a significant role in overall thermal tolerance [39–43].

The clades, lineages, or species of Symbiodinium hosted by
a coral are critical to its survival and resilience to stress. The
genus Symbiodinium is genetically diverse and comprises at
least nine divergent clades [clades A-I; 44]. These clades can
be further broken down into lineages, corresponding approx-
imately to species level diversity [45], with some species con-
ferring variable benefits [39, 44, 46]. In particular, some
Symbiodinium are more thermally tolerant than others [9, 39,
47], specifically Symbiodinium clade D [48]. In contrast, clade
C is more thermally sensitive [49–51], yet it includes
Symbiodinium thermophilum, a thermally tolerant species
within clade C endemic to the Red Sea [52]. This example
illustrates that making clade level generalizations is problem-
atic due to the physiological diversity within a single
Symbiodinium clade [53]. Specific lineages within clades
can also confer various advantages. For example, C1 enhances
growth rate [54], S. thermophilum confers heat tolerance [52],
and B2 confers cold tolerance [55]. Additionally, species D1a
(Symbiodinium trenchii) has been shown to be both heat

tolerant [56, 57] and cold tolerant [47]. However, the in-
creased thermal tolerance of a coral which predominantly
hosts clade D Symbiodinium appears to come at a cost of
lower lipid stores, reproductive potential, growth, and carbon
fixation rates compared with corals that host other clades
[58–61]. Due to the high levels of variation in coral host-
Symbiodinium interactions, it is essential to identify which
lineages are present in order to help predict how a coral may
respond to environmental stressors.

The majority of coral species host one dominant
Symbiodinium lineage [44, 62, 63] along with several non-
dominant lineages [64], each proliferating primarily by asex-
ual cloning [53]. However, other corals can host multiple
dominant lineages or clades [39, 53]. Recent advances in ge-
netic techniques, especially next-generation sequencing
(NGS), have allowed researchers to identify cryptic and low-
abundance symbionts comprising 0.1% or more of the total
Symbiodinium community within a host [37, 65]. It is impor-
tant to understand these low-abundance Symbiodinium, as
they have the potential to play important roles in coral-algal
holobiont physiology under ambient and stressful conditions
[66–68], but see also [69]. Identifying trends in Symbiodinium
community variation (including cryptic or low abundance lin-
eages) within and between species across a coral reef may
allow for a better understanding of the role of Symbiodinium
communities in modulating coral response to environmental
variation.

Symbiodinium communities have been shown to vary re-
gionally (between reef systems; [61, 70, 71]), locally (within a
reef system; [70]), temporally (across time on the same reef;
[72]), and within a colony [71]. Studies of this variation have
revealed geographically endemic lineages of Symbiodinium
which may play a significant role in local and regional scale
coral survival and stress tolerance [39, 71, 73]. While temper-
ature stress may play a role in structuring Symbiodinium com-
munities [74], variations in other environmental factors have
also been shown to drive Symbiodinium community compo-
sition. For example, physical processes and total suspended
solids (a proxy for nutrients and flow) drive Symbiodinium
associations within the Orbicella annularis species complex
in Belize and Panama [70]; however, on a regional scale (e.g.,
the entire Caribbean Sea), O. annularis Symbiodinium com-
munities differed based on patterns of chronic thermal stress
[75]. Additionally, the presence of several subclades of
Symbiodinium correlated with other environmental parame-
ters, such as cooler summers, nutrient loading, and turbidity
[75]. Taken together, these studies demonstrate that variation
in Symbiodinium communities can be driven by a variety of
environmental parameters and may be specific to each coral
species in each specific environment.

The majority of Caribbean Symbiodinium biogeography
studies have focused on the Orbicella species complex [70,
71, 75] as Orbicella spp. has experienced significant declines



over the last two decades [76] and are now listed as
Bthreatened^ under the Endangered Species Act. However,
the variation in Symbiodinium communities of other more
stress tolerant corals, such as Siderastrea siderea and
S. radians [77–82], remain relatively understudied. Here, we
assess Symbiodinium community composition in three species
of ubiquitous Caribbean corals (S. siderea, S. radians, and
Pseudodiploria strigosa) across three distinct thermal regimes
along the Belize Mesoamerican Barrier Reef System (MBRS)
previously shown to influence coral community composition
[83]. Coral-associated Symbiodinium communities were ex-
amined across an inshore-offshore thermal gradient and a lat-
itudinal gradient to elucidate the role that coral species, local
habitat, and thermal regime play in structuring Symbiodinium
communities in the western Caribbean Sea.

Methods

Site Selection and Characteristics

Ten sites along the Belize MBRS were selected. These sites
were previously characterized into three thermally distinct re-
gimes (lowTP, modTP, highTP) and exhibited variations in coral
species diversity and richness [83]. HighTP sites (inshore)
were characterized by larger annual temperature variation
and higher annual maximum temperatures and are exposed
to temperatures above the regional bleaching threshold of
29.7 °C (Aronson et al. 2002) more often than modTP sites
(mid-channel reefs) and lowTP sites (offshore) [83]. HighTP
sites were dominated by stress tolerant and weedy coral spe-
cies while corals representing all four coral life histories [stress
tolerant, weedy, competitive, and generalist; 82] were present
in lowTP and modTP sites [83].

Sample Collection

In November 2014, five to ten (quantity depended on local
availability) coral tissue microsamples (approx. 2 mm di-
ameter) were collected at 3 to 5 m depth from three coral
species (S. siderea, S. radians, and P. strigosa) at nine sites
across four latitudes along the Belize MBRS (Fig. 1;
Table 1). Each latitudinal transect contained a lowTP,
modTP, and highTP site. The transects from north to south
were as follows: Belize City, Dangriga, Placencia, and
Punta Gorda (Fig. 1). All three sites within the Punta
Gorda and Placencia transects were sampled, but only the
lowTP and highTP sites were sampled along the Belize City
and Dangriga transects due to time constraints. Samples
collected at the Belize City highTP site were collected in
October 2015, as no corals were located in the area in
2014, but patch reefs were located in 2015. Coral
microsamples were collected at least 1 m apart from one

another to randomize microenvironmental and host genetic
effects in order to attain more site-specific representative
samples. Microsamples were collected from colony edges
to avoid unnecessary damage to the larger colony and to
limit effects of Symbiodinium zonation within an individual
[71]. Tissue microsamples were placed on ice immediately
following collection for transport to mainland Belize.
Microsamples were then preserved in 96% ethanol and
stored on ice at − 20 °C and transported on ice to the coral
ecophysiology lab at the University of North Carolina at
Chapel Hill and stored at − 20 °C until DNA isolation.

Sea Surface Temperature

Daily 1-km horizontal resolution sea surface temperature
(SST) estimates were acquired from the NASA Jet
Propulsion Laboratory’s Multi-Scale High Resolution SST
(JPL MUR SST) product via NOAA Environmental
Research Division’s Data Access Program (ERDDAP-
https://coastwatch.pfeg.noaa.gov/erddap/index.html) [84]
and analyzed following Baumann et al. [83]. Several
additional temperature parameters were taken into account
for this study, including annual degree heating days (similar
to degree heating weeks, as per Gleeson and Strong [85]),
annual minimum temperature, annual average temperature,
annual winter average temperature, and annual summer
average temperature. Values for these parameters within the
three thermal regimes are reported in Table S1.

DNA Extraction

Coral holobiont (coral, algae, and microbiome) DNA was
isolated from each sample following a modified phenol-
chloroform [86–88] method described in detail by Davies
et al. [87]. Briefly, DNA was isolated by immersing the
tissue in digest buffer (100 mM NaCL, 10 mM Tris-Cl
pH 8.0, 25 mM EDTA pH 9.0, 0.5% SDS, 0.1 mg ml−1

Proteinase K, and 1 μg ml−1 RNaseA) for 1 h at 42 °C
followed by a standard phenol-chloroform extraction.
Extracted DNAwas confirmed on an agarose gel and quan-
tified using a Nanodrop 2000 Spectrophotometer (Thermo
Scientific).

PCR Amplification and Metabarcoding

The ITS-2 region (350 bp) was targeted and amplified in each
sample using custom primers that incorporated Symbiodinium
specific ITS-2-dino-forward and its2rev2-reverse regions [65,
73, 89]. Each primer was constructed with a universal linker,
which allowed for the downstream incorporation of Illumina
specific adapters and barcodes during the second PCR as well
as four degenerative bases whose function was to increase the
complexity of library composition. The forward primer was

https://coastwatch.pfeg.noaa.gov/erddap/index.html


5′-GTCTCGTCGGCTCGG + AGATGTGTATAAGAGACAG
+ NNNN + CCTCCGCTTACTTATATGCTT-3′, where
the underlined bases are the 5′-universal linker, italicized ba-
ses indicate spacer sequences, Ns denote degenerative bases,
and the bold bases are the ITS-2-dino. The reverse primer was
5′-TCGTCGGCAGCGTCA + AGATGTGTATAAGAGACAG
+ NNNN + GTGAATTGCAGAACTCGTG-3′.

Each 20 μL PCR reaction contained 5–100 ng DNA tem-
plate, 12.4 μL Milli-Q H2O, 0.2 μM dNTPs, 1 μM forward
and 1 μM reverse primers, 1× Extaq buffer, and 0.5 U (units)
Extaq polymerase (Takara Biotechnology). PCR cycles were
run for all samples using the following PCR profile: 95 °C for
5 min, 95 °C for 40 s, 59 °C for 2 min, 72 °C for 1 min per

cycle and a final elongation step of 72 °C for 7 min. The
optimal number of PCR cycles for each sample was deter-
mined from visualization of a faint band on a 2% agarose
gel (usually between 22 and 28 cycles) as per Quigley et al.
[65]. PCR products were cleaned using GeneJET PCR purifi-
cation kits (Fermentas Life Sciences), and then a second PCR
reaction was performed to incorporate custom barcode-primer
sequences [65] modified for IlluminaMiseq as in Klepac et al.
[90]. Custom barcode primer sequences included 5′-Illumina
adaptor + 6 bp barcode sequence + one of two universal
linkers-3′ (e.g., 5′-CAAGCAGAAGACGGCATACGAGAT +
GTATAG + GTCTCGTGGGCTCGG-3′, or 5′-AATG
ATACGGCGACCACCGAGATCTACAC + AGTCAA +

Fig. 1 Thermal regime
designations for sampling sites on
the Belize MBRS [83]. Stars
indicate sites where coral tissue
samples were collected for
Symbiodinium community
analysis. LowTP, modTP, and
highTP are defined based on
combined averages of annual
maximum temperature, annual
temperature range, annual days
above the bleaching threshold,
and annual longest streak of
consecutive days above the
bleaching threshold. LowTP sites
exhibit the lowest values for all
parameters measured, and highTP
sites exhibit the highest. A more
detailed description of
classification of these thermal
regimes can be found in Baumann
et al. [83]



TCGTCGGCAGCGTC-3′). Following barcoding, PCR sam-
ples were visualized on a 2% agarose gel and pooled based on
band intensity (to ensure equal contributions of each sample in
the pool). The resulting pool was run on a 1% SYBR Green
(Invitrogen) stained gel for 60 min at 90 V and 120 mA. The
target band was excised, soaked in 30 μL of Milli-Q water
overnight at 4 °C, and the supernatant was submitted for se-
quencing to the University of North Carolina at Chapel Hill
High Throughput Sequencing Facility across two lanes of
Illumina MiSeq (one 2 × 250, one 2 × 300). The two lanes
produced similar mapping efficiencies (73 and 73%, respec-
tively; Table S3).

Bioinformatic Pipeline

The bioinformatic pipeline used here builds upon previous
work by Quigley et al. [65] and Green et al. [73]. Raw se-
quences were renamed to retain sample information, and then
all forward (R1) and reverse (R2) sequences were concatenat-
ed into two files, which were processed using CD-HIT-OTU
[91]. CD-HIT-OTU clusters concatenated reads into identical
groups at 100% similarity for identification of operational
taxonomic units (OTUs). Each sample was then mapped back
to the resulting reference OTUs, and an abundance count for
each sample across all OTUs was produced. A BLASTn
search of each reference OTU was then run against the
GenBank (NCBI) nucleotide reference collection using the
representative sequence from each OTU to identify which
Symbiodinium lineage was represented by each OTU
(Table S2).

The phylogeny of representative sequences of each distinct
Symbiodinium OTU was constructed using the PhyML tool
[92, 93] within Geneious version 10.0.5 (http://geneious.com)
[94]. PhyML was run using the GTR+I model (chosen based
on delta AIC values produced from jModelTest [92, 95]) to
determine the maximum likelihood tree. The TreeDyn tool in
Phylogeny.fr was used to view the tree (Fig. 2) [96–98]. The

reference sequences included in the phylogeny were accessed
from GenBank (Table S6).

Statistical Analysis

OTU abundance analysis used the R [99] package
MCMC.OTU and followed methods described in Green
et al. [73]. First, outlier samples with low sequence coverage
(total log counts ≥ 2.5 standard deviations below the mean of
all samples) were identified and removed, which removed
three samples. Next, rare OTUs (< 0.1% of the global sum
of counts [as per 65]) were identified and discarded leaving 56
of the original 5132 OTUs. Many remaining OTUs were iden-
tified as having the same Symbiodinium lineage (i.e., C1 or
D1a), and these OTUs were regressed against one another.
Positive correlations between OTUs within a lineage may in-
dicate paralogous loci from the same genome [37, 73]. As a
result, reads fromOTUswithin the same lineage that showed a
positive R2 and significant p value following linear regression
were pooled in order to control for possible overestimation of
biodiversity [100]. Pooling resulted in a final OTU table con-
taining ten OTUs (Table S2). Raw reads, trimmed reads,
mapped reads, and percentage of reads mapped per species
were calculated and reported in Table 2. Final pooled OTUs
were run through the MCMC.OTU package in R and fit to a
model that included fixed effect for host species, collection
site, and thermal regime (Table S4). Differences between fixed
effects were calculated based on their sampled posterior dis-
tributions and statistical significance was calculated as per
Matz et al. [101]. OTU count data were converted to relative
abundances (%), which were used to generate Fig. 3
(Table S5).

To visualize differences in symbiont communities between
temperature regimes, latitude, and species, principal compo-
nent analyses (PCA) were performed on all OTUs that passed
filtering using the vegan package in R [102]. Count data were
transformed using Bray-Curtis similarity and were used as

Table 1 Sampling locations and
sample size for S. siderea (SSID),
S. radians (SRAD), and
P. strigosa (PSTR). Locations are
listed in order of descending
latitude (northernmost to
southernmost). ‘–’ represent an
instance where sample size is
equal to zero (n = 0)

Transect Thermal
regime

Collection
date

Illumina
lane

Lat (°N)
(°W)

Long SSID SRAD PSTR

Belize City Low Nov 2014 2 17.64363 88.0264 n = 10 – –

Belize City High Oct 2015 2 17.48685 88.1207 n = 10 – –

Dangriga Low Nov 2014 2 17.078 88.01285 n = 9 – –

Dangriga High Nov 2014 2 16.79491 88.27699 n = 10 – –

Placencia Low Nov 2014 1 16.45816 88.01295 n = 7 n = 7 n = 5

Placencia Mod Nov 2014 1 16.49995 88.16527 n = 6 n = 7 n = 6

Placencia High Nov 2014 1 16.4654 88.31315 n = 9 n = 9 n = 5

Sapodilla Low Nov 2014 1 16.15729 88.25073 n = 8 – –

Sapodilla Mod Nov 2014 1 16.13013 88.33234 n = 6 – n = 6

Sapodilla High Nov 2014 1 16.2245 88.62943 n = 8 n = 6 –

http://geneious.com


input for PCA. PERMANOVAwas carried out on each PCA
using the adonis function of the vegan package in R [102].

Results

Symbiodinium Diversity and Abundance Across the Belize
MBRS

Our analysis produced 118,834 unique sequences of which
89,211 mapped to 10 OTUs (Table 1). The dominant OTU
(hereafter referred to as lineage) in S. siderea was C1.I
(74.39%), while B1.I dominated S. radians (70.31%) and
P. strigosa (51.74%) samples (Table S5; Fig. 3). Nine out of
ten Symbiodinium lineages were present in S. siderea and
P. strigosa, while all ten were present in S. radians
(Table S5). The fourmost abundant lineages in S. sidereawere
C1.I, C1.III, D1a, and B1.I (74.39, 12.94, 9.29, and 2.94%,
respectively; Table S5; Fig. 3a), and date of collection did not

impact the dominate Symbiodinium lineages (all samples were
collected in 2014 except for Belize City highTP which were
collected in 2015; Fig. 3). SymbiodiniumD1a (S. trenchii) was
most abundant in S. siderea at lowTP sites, particularly the
lowTP site along the most southern Punta Gorda transect
(Table S5; Fig. 3a), and lineage C1.III was more abundant in
central and northern Belize (Belize City and Dangriga tran-
sects) compared to southern Belize (Figs. 1 and 3). Lineages
C1.II, B1.II, G3, A4a, and B.BG were also present in
S. siderea (Table S5; Fig. 3a).

The four most abundant lineages in S. radians were B1.I,
C1.I, B1.II, and C1.II (70.31, 13.41, 6.54, and 2.19%, respec-
tively; Table S5; Fig. 3b). B1.I was the dominant symbiont
across all thermal regimes and all latitudes, but C1.I and C1.II
were the most abundant Symbiodinium lineages in several
samples from the central Placencia transect (Table S5; Fig.
3b). Lineage C1.II was only present in proportions above
1% in two samples, both from the modTP site along the
Placencia transect (Table S5; Fig. 3b). D1a (S. trenchii) was
only present in low abundance in S. radians (Table S5; Fig.
3b). Lineages C1.III, D1a, G3, A4a, B.BG, and C3 were also
present in S. radians (Table S5; Fig. 3b).

The four most abundant lineages in P. strigosa were B1.I,
C1.I, C1.II, and C1.III (51.74, 21.87, 16.92, and 6.24%, respec-
tively). C1.II was the most abundant lineage at the lowTP site in
the Placencia transect, but B1.I was most abundant at all other
sites (Table S5; Fig. 3). C1.I was the second most abundant
lineage in modTP and highTP sites, and C1.II was the second
most abundant lineage in the lowTP site (Table S5; Fig. 3c). D1a
(S. trenchii) was only present in low abundance in P. strigosa
(Table S5; Fig. 3c). Lineages D1a, B1.II, G3, A4a, and B.BG
were also present in P. strigosa (Table S5; Fig. 3c).

Fig. 2 Phylogenetic analysis of
ITS-2 sequences of representative
OTUs from this study in addition
to reference sequences for each
clade (indicated by asterisk).
Branch support values are shown
on the branches at divisions
between distinct clades. The scale
bar represents replacements per
nucleotide site

Table 2 Average number of raw reads, trimmed reads, and mapped
reads including mapping efficiency (% of trimmed reads that mapped)
for each species

Species Raw
reads

Trimmed
reads

Mapped
reads

Mapping
efficiency (%)

S. siderea 46,161 28,453 22,048 73

S. radians 51,081 46,812 35,290 75

P. strigosa 88,888 43,928 31,873 69

Total 186,130 118,834 89,211 75



Host Species Specificity in Symbiodinium Community
Composition

Symbiodinium communities differed significantly between
S. siderea and the other two coral host species (Table S4;
Fig. 4a; p value = 0.001). This difference appears to be driven
by higher relative abundances of C1.I and D1a (S. trenchii) in
S. siderea compared to P. strigosa and S. radians (Fig. 3a).
Within S. siderea, Symbiodinium communities varied by ther-
mal regime site, and latitude (Table S4; Fig. 4b).
Symbiodinium communities in S. radians and P. strigosa did
not differ significantly by thermal regime, site, or latitude
(Table S4).

Discussion

Host-Specificity Drives Symbiodinium Community
Composition

This study indicates that S. siderea hosts significantly different
Symbiodinium communities from S. radians and P. strigosa
on the Belize MBRS (Table S5; Fig. 3), providing evidence to
support previous findings of high rates of host-specific

Symbiodinium associations within the Caribbean Sea where
at least 62 genetically different Symbiodinium have been
found and where > 50% of Symbiodinium lineages have been
found in only one coral genus [53, 103]. This trend contrasts
that of the Indo-Pacific where Symbiodinium diversity is lower
and a few host-generalist Symbiodinium associate with many
corals [103]. The three coral species studied here were found
to be associated with the two most abundant Symbiodinium
clades in the Caribbean [104]: B1 in S. radians and P. strigosa
colonies and C1 in S. siderea (Table S5; Fig. 3). These asso-
ciations are consistent with previous studies that identified the
same dominant Symbiodinium in these species on the Belize
MBRS [103]. However, our data contrast with findings of
other studies on the same species elsewhere in the Caribbean
which have identified other dominant Symbiodinium lineages
in these host species (e.g., C3 and B5a in S. siderea and B5
and C46a in S. radians; [103, 105]). This supports previous
evidence for regional endemism within the Caribbean Sea
[103, 106]. Symbiodinium clade G, a lineage found in
Octocorals [107], Foraminifera [108], and Pacific Porites
spp. [109], was also observed to be a minor player in the
symbiont communities of S. radians and P. strigosa
(Table S5; Fig. 3). This result indicates that this clade is pres-
ent in the Caribbean Sea; however, because this clade is not

Fig. 3 Relative abundance (%) of
each OTU (lineage) in S. siderea
(a), S. radians (b), and P. strigosa
(c). Each column represents an
individual sample. Columns are
arranged by latitudinal transect
(as indicated by site names in
alternating gray and white boxes)
and then by thermal regime (blue
boxes indicate lowTP sites, green
boxes indicate modTP sites, and
red boxes indicate highTP sites



traditionally associated with Scleractinian corals, we cannot
be confident that its presence is as a symbiont, a contaminant
from the local environment, or that it was ingested as food.
Differences in Symbiodinium communities between coral host
species appear to be driven by the relative abundance of B1
and C1 as well as the presence or absence of D1a (Fig. 4a).
The presence of multiple lineages of C1 and B1 in this study
(Tables S2 and S5) supports previous evidence of phylogenet-
ic partitioning, or highly specific lineages, in clades B and C
[71, 103, 110, 111]. Interestingly, Symbiodinium communities
were more similar between S. radians and P. strigosa than
between S. radians and S. siderea, indicating that members

of the same coral genus do not necessarily share a common
dominant Symbiodinium partner, a phenomenon previously
observed in Siderastrea spp. and Orbicella spp. across the
Caribbean Sea [103]. Finney et al. [103] show that
S. radians and S. siderea exhibit different dominant
Symbiodinium in both Belize (B5 vs. C1) and Barbados (B5
vs. C3). A similar trend is seen in Orbicella faveolata and
O. annularis (B17 vs. D1a in Belize and C7 vs. B1 in
Barbados) [103]. These results suggest that Symbiodinium
communities may not be influenced by coral host genus.
Previously, it has been shown that symbiont acquisition strat-
egy does not play a large role in determining Symbiodinium

Fig. 4 Principal component
analysis (PCA) plots of
Symbiodinium communities by
species (a) and by thermal regime
for S. siderea (b). Percentages on
each axis indicate the amount of
variation explained by each axis.
Adonis p values indicate
significant results of
PERMANOVA tests. See
Table S4 for additional
PERMANOVA results. Black
arrows indicate loadings showing
the magnitude and direction of the
effect of each OTU on the total
variance. Colored ellipses
indicate 95% confidence intervals



communities; however, geographic distance and differences in
environmental variables between habitats have been proposed
as possible drivers of symbiont community composition [53,
103]. Coral life history strategy [82] or energetic demands
may also play a role. Future research is needed to better un-
derstand this process. Differences in Symbiodinium commu-
nities between S. siderea and S. radians/P. strigosa are sug-
gestive that coral species are differentially affected by the
environmental gradients sampled here.

Thermal Regime Affects Symbiodinium Community
Composition in S. siderea but Has No Effect on Other
Species

Symbiodinium communities varied significantly across ther-
mal regimes in S. siderea (Table S4; Fig. 4b), supporting pre-
vious evidence that habitat type [112] and temperature [113]
are correlated with differences in Symbiodinium associations.
Symbiodinium communities did not differ significantly across
thermal regimes in S. radians or P. strigosa, possibly due to
low sample size at each sampling site for these two coral
species (Table 1; Fig. 3). Symbiodinium communities did not
differ between thermal regimes in S. radians or P. strigosa
(Table S4). In this study, only temperature parameters were
quantified, yet it is likely that they did not account for all of the
variance in Symbiodinium communities for any coral host
species investigated as other local impacts, such as nutrients,
light availability, and/or sedimentation, may play a role [48,
114–118].

Role of Local Impacts on Symbiodinium Communities

It has previously been shown that prevalence of specific
Symbiodinium types within a coral host species can differ
based on local scale environmental parameters such as nutri-
ent loading and turbidity [75]. While these variables were not
quantified in this study, chlorophyll-a (chl-a), a proxy for nu-
trient input, has previously been shown to be positively cor-
related with thermal regime in Belize. Specifically, highTP
sites had higher chl-a than lowTP sites across the Belize
MBRS [83]. Therefore, a PERMANOVA that shows signifi-
cant differences in Symbiodinium communities between ther-
mal regimes includes a confounding effect of nutrient input
(Table S4). Since significant differences in Symbiodinium
communities occurred between thermal regimes in S. siderea
only, it is possible that nutrient loading or turbidity played a
role in Symbiodinium variation within S. siderea, but may not
have significantly influenced Symbiodinium communities in
S. radians or P. strigosa. However, the magnitude of this in-
fluence cannot be teased apart from the effect of thermal re-
gime without extensive quantification of nutrient concentra-
tions across the Belize MBRS.

Coral Host May Play a Role in Thermal Tolerance

In this study, the relative abundance of thermally tolerant
Symbiodinium D1a (S. trenchii) was not associated with in-
shore reefs as in Toller et al. [119], marginal reefs as in
Hennige et al. [120] and LaJeunesse et al. [104], sites exposed
to the highest temperatures as in Baker et al. [48], or sites
exposed to the widest range of thermal fluctuations as in
Abrego et al. [121], Fabricius et al. [122], and LaJeunesse
et al. [40, 123]. Instead, S. trenchii was most prevalent at the
southern Punta Gorda lowTP and modTP sites (Tables S1 and
S5; Fig. 3). Since S. trenchii is often associated with recently
bleached and/or recovering corals [48, 124], but can be re-
placed or outcompeted following recovery [105], it is possible
that a recent bleaching event may have occurred at these sites;
however, these data are not available. In summer 2014, tem-
peratures at all sites in this study exceeded the published local
bleaching threshold of 29.7 °C [86] (Fig. S1), yet S. trenchii
was only the dominant symbiotic partner in eight S. siderea
samples, all of which were from the same two sites (Punta
Gorda lowTP and modTP; Fig. 3). The presence of S. trenchii
in several P. strigosa corals taken from the Punta Gorda
modTP site provides additional evidence of temperature stress
at these sites (Punta Gorda lowTP and modTP). This result
suggests that corals at these sites had either bleached recently
or retained S. trenchii as a dominant symbiont following past
bleaching, possibly as a way to increase thermal tolerance
[125]. Lower thermal tolerance has been proposed previously
for S. siderea [80] and O. faveolata [126] at these sites (Punta
Gorda lowTP and modTP) and may be due to nutrients, sedi-
ments, and low salinity terrestrial runoff exported from
Guatemala and Honduras by currents that wash over this area
of the Belize MBRS [126–128]. Low abundances of
S. trenchii at other lowTP and modTP sites corroborate this
hypothesis, as estimated thermal stress occurred at all latitudes
at roughly the same magnitude (Fig. S1). Overall, lack of
S. trenchii in highTP sites indicates that regardless of warmer
and more variable conditions, these three coral species do not
associate with this thermally tolerant symbiont. Therefore,
presumed increased thermal tolerance at highTP sites may be
due to local adaptation of the coral host [37, 129] or strains of
Symbiodinium [130, 131]. Further research into coral host and
symbiont local adaptation would be needed to confirm this
hypothesis.

Conclusion

This study demonstrates that Symbiodinium communities
associated with corals in Belize are dependent on both host
species and environmental variables. S. siderea Symbiodinium
communities were divergent from S. radians and P. strigosa
(Figs. 3 and 4a). Thermal regime played a role in driving



Symbiodinium community composition in S. siderea but not
S. radians or P. strigosa, suggesting that local impacts such as
nutrients, sediment, or light availability may also influence
Symbiodinium communities on the Belize MBRS.
Additionally, low abundance of S. trenchii in inshore highTP
sites indicates that thermal tolerance at these sites must be
conferred through alternative mechanisms, such as local
adaptation.
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