54,227 research outputs found

    Universal characteristics of resonant-tunneling field emission from nanostructured surfaces

    Full text link
    We have performed theoretical and experimental studies of field emission from nanostructured semiconductor cathodes. Resonant tunneling through electric-field-induced interface bound states is found to strongly affect the field-emission characteristics. Our analytical theory predicts power-law and Lorentzian-shaped current-voltage curves for resonant-tunneling field emission from three-dimensional substrates and two-dimensional accumulation layers, respectively. These predicted line shapes are observed in field emission characteristics from self-assembled silicon nanostructures. A simple model describes formation of an accumulation layer and of the resonant level in these systems.Comment: 5 pages, 4 figures, RevTex, to appear in J. Appl. Phy

    Precision Charmonium Spectroscopy From Lattice QCD

    Get PDF
    We present results for Charmonium spectroscopy using Non-Relativistic QCD (NRQCD). For the NRQCD action the leading order spin-dependent and next to leading order spin-independent interactions have been included with tadpole-improved coefficients. We use multi-exponential fits to multiple correlation functions to extract ground and excited SS states. Splittings between the lowest SS, PP and DD states are given and we have accurate values for the SS state hyperfine splitting and the χc\chi_c fine structure. Agreement with experiment is good - the remaining systematic errors are discussed.Comment: 23 pages uuencoded latex file. Contains figures in late

    Hierarchical approach to 'atomistic' 3-D MOSFET simulation

    Get PDF
    We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1-μm MOSFETs. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations

    Study of the Barringer Refractor Plate Correlation Spectrometer as a remote sensing instrument

    Get PDF
    Barringer refractor plate correlation spectrometer as remote sensing instrument of pollutant gases in atmospher

    Electronic and optical properties of quantum wells embedded in wrinkled nanomembranes

    Full text link
    The authors theoretically investigate quantum confinement and transition energies in quantum wells (QWs) asymmetrically positioned in wrinkled nanomembranes. Calculations reveal that the wrinkle profile induces both blue- and redshifts depending on the lateral position of the QW probed. Relevant radiative transistions include the ground state of the electron (hole) and excited states of the hole (electron). Energy shifts as well as stretchability of the structure are studied as a function of wrinkle amplitude and period. Large tunable bandwidths of up to 70 nm are predicted for highly asymmetric wrinkled QWs.Comment: 3 pages, 4 figures. The following article has been submitted to Applied Physics Letters. After it is published, it will be found at http://apl.aip.or

    The Heavy-Light Spectrum from Lattice NRQCD

    Get PDF
    We present a lattice investigation of heavy-light mesons in the quenched approximation, using non-relativistic QCD for the heavy quark and a clover improved Wilson formulation for the light quark. A comprehensive calculation of the heavy-light spectrum has been performed for various heavy quark masses around the bb. Our results for the Bs−BdB_s-B_d splitting agree well with the experimental value. We find the Λb−B\Lambda_b-B splitting to be compatible with experiment, albeit with large error bars. Our B∗−BB^*-B splitting is slightly low, which could be explained as an effect of quenching. For the first time, we are able to estimate the mass of PP states at the BB and compare them with experiment.Comment: 24 pages, latex, 10 figures in uuencoded compressed postscrip

    Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts

    Full text link
    A non-equilibrium Green function formalism (NEGF) is used to study the conductance of a side-gated quantum point contact (QPC) in the presence of lateral spin-orbit coupling (LSOC). A small difference of bias voltage between the two side gates (SGs) leads to an inversion asymmetry in the LSOC between the opposite edges of the channel. In single electron modeling of transport, this triggers a spontaneous but insignificant spin polarization in the QPC. However, the spin polarization of the QPC is enhanced substantially when the effect of electron-electron interaction is included. The spin polarization is strong enough to result in the occurrence of a conductance plateau at 0.5G0 (G0 = 2e2/h) in the absence of any external magnetic field. In our simulations of a model QPC device, the 0.5 plateau is found to be quite robust and survives up to a temperature of 40K. The spontaneous spin polarization and the resulting magnetization of the QPC can be reversed by flipping the polarity of the source to drain bias or the potential difference between the two SGs. These numerical simulations are in good agreement with recent experimental results for side-gated QPCs made from the low band gap semiconductor InAs
    • …
    corecore