68,984 research outputs found

    The Impact of the 1996 SSI Childhood Disability Reforms: Evidence from Matched SIPP-SSA Data

    Get PDF
    The Personal Responsibility and Work Opportunity Reconciliation Act of 1996 changed the definition of disability used to determine eligibility for disabled children under the Supplemental Security Income (SSI) program and made other changes in the program. The law required the redetermination of eligibility status for children potentially affected by the new definition of disability. As a result, an estimated 100,000 children were expected to lose SSI benefits. The goal of this paper is to understand the impact of benefit loss on affected children and their families. The analysis draws on data from the 1992, 1993 and 1996 panels of the Survey of Income and Program Participation matched with Social Security Administration records on SSI program participation. The data are used to analyze the impact of the loss of SSI income as a result of the 1996 legislation on family labor supply, welfare program participation, and income and poverty. Compared with families that lost SSI benefits due to normal attrition from the program, the excess benefit loss due to the 1996 childhood disability reforms is associated with lower levels of family labor supply, higher levels of participation in AFDC/TANF and food stamps, and lower levels of family income relative to poverty. For some outcomes, these effects—measured one month after benefit loss—persist for up to 12 months.

    Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD

    Full text link
    We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in nu-nubar charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling alpha_s, thus completing the description of unpolarized inclusive W^(+-) exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for nu+nubar charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.Comment: 6 pages, LaTeX (PoS style), 1 eps-figure. Fortran files of the main results available with the source. To appear in the proceedings of `DIS 2016', DESY, Hamburg (Germany), April 201

    Hierarchical approach to 'atomistic' 3-D MOSFET simulation

    Get PDF
    We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1-ĂŽÂŒm MOSFETs. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations

    Universal characteristics of resonant-tunneling field emission from nanostructured surfaces

    Full text link
    We have performed theoretical and experimental studies of field emission from nanostructured semiconductor cathodes. Resonant tunneling through electric-field-induced interface bound states is found to strongly affect the field-emission characteristics. Our analytical theory predicts power-law and Lorentzian-shaped current-voltage curves for resonant-tunneling field emission from three-dimensional substrates and two-dimensional accumulation layers, respectively. These predicted line shapes are observed in field emission characteristics from self-assembled silicon nanostructures. A simple model describes formation of an accumulation layer and of the resonant level in these systems.Comment: 5 pages, 4 figures, RevTex, to appear in J. Appl. Phy

    Compressive and Noncompressive Power Spectral Density Estimation from Periodic Nonuniform Samples

    Get PDF
    This paper presents a novel power spectral density estimation technique for band-limited, wide-sense stationary signals from sub-Nyquist sampled data. The technique employs multi-coset sampling and incorporates the advantages of compressed sensing (CS) when the power spectrum is sparse, but applies to sparse and nonsparse power spectra alike. The estimates are consistent piecewise constant approximations whose resolutions (width of the piecewise constant segments) are controlled by the periodicity of the multi-coset sampling. We show that compressive estimates exhibit better tradeoffs among the estimator's resolution, system complexity, and average sampling rate compared to their noncompressive counterparts. For suitable sampling patterns, noncompressive estimates are obtained as least squares solutions. Because of the non-negativity of power spectra, compressive estimates can be computed by seeking non-negative least squares solutions (provided appropriate sampling patterns exist) instead of using standard CS recovery algorithms. This flexibility suggests a reduction in computational overhead for systems estimating both sparse and nonsparse power spectra because one algorithm can be used to compute both compressive and noncompressive estimates.Comment: 26 pages, single spaced, 9 figure

    How typical is the Coma cluster?

    Get PDF
    Coma is frequently used as the archetype z~0 galaxy cluster to compare higher redshift work against. It is not clear, however, how representative the Coma cluster is for galaxy clusters of its mass or X-ray luminosity, and significantly: recent works have suggested that the galaxy population of Coma may be in some ways anomolous. In this work, we present a comparison of Coma to an X-ray selected control sample of clusters. We show that although Coma is typical against the control sample in terms of its internal kinematics (substructure and velocity dispersion profile), it has a significantly high (~3sigma) X-ray temperature set against clusters of comparable mass. By de-redshifting our control sample cluster galaxies star-formation rates using a fit to the galaxy main sequence evolution at z < 0.1, we determine that the typical star-formation rate of Coma galaxies as a function of mass is higher than for galaxies in our control sample at a confidence level of > 99 per cent. One way to alleviate this discrepency and bring Coma in-line with the control sample would be to have the distance to Coma to be slightly lower, perhaps through a non-negligible peculiar velocity with respect to the Hubble expansion, but we do not regard this as likely given precision measurements using a variety of approaches. Therefore in summary, we urge caution in using Coma as a z~0 baseline cluster in galaxy evolution studies.Comment: accepted for publication in MNRA

    Intranasal melanoma treated with radiation therapy in three dogs

    Get PDF
    Three dogs were investigated for chronic unilateral nasal discharge. In all cases CT imaging showed an intranasal mass causing turbinate lysis and no evidence of metastasis. Cytology in cases 1 (a 14-year-old neutered male crossbreed dog) and 2 (a five-year-old neutered male German Shepherd dog) demonstrated a pleomorphic cell population with variable intracellular pigment suspicious of melanocytic neoplasia. Histopathology with immunohistochemistry (Melan-A and vimentin, plus PNL-2 in one case) confirmed the diagnosis of melanoma in all dogs. All dogs were treated with megavoltage radiotherapy using linear accelerators. Cases 1 and 3 (a nine-year-old neutered female beagle dog) received a hypofractionated (4 × 8 Gy) protocol and case 2 received a definitive (12 × 4 Gy) protocol. Complete remission was demonstrated on repeat CT scan five months after diagnosis in case 1 and seven months in case 2. Stable disease was documented on CT at four months for case 3; however, clinical signs in this dog remained controlled for 10 months in total. Case 1 died of unrelated causes five months after diagnosis, case 2 was euthanased due to the development of seizures 13 months after diagnosis, and case 3 was lost to follow-up 12 months after diagnosis. Melanoma should be considered as a rare differential diagnosis for primary nasal neoplasia in the dog and radiation therapy can be used as effective local therapy

    Random telegraph signal amplitudes in sub 100 nm (decanano) MOSFETs: a 3D `Atomistic' simulation study

    Get PDF
    In this paper we use 3D simulations to study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single carrier in interface states in the channel of sub 100 nm (decanano) MOSFETs. Both simulations using continuous doping charge and random discrete dopants in the active region of the MOSFETs are presented. We have studied the dependence of the RTS amplitudes on the position of the trapped charge in the channel and on the device design parameters. We have observed a significant increase in the maximum RTS amplitude when discrete random dopants are employed in the simulations
    • 

    corecore