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Abstract

This paper presents a novel power spectral density estimation technique for band-limited,

wide-sense stationary signals from sub-Nyquist sampled data. The technique employs multi-

coset sampling and incorporates the advantages of compressed sensing (CS) when the power

spectrum is sparse, but applies to sparse and nonsparse power spectra alike. The estimates

are consistent piecewise constant approximations whose resolutions (width of the piecewise

constant segments) are controlled by the periodicity of the multi-coset sampling. We show

that compressive estimates exhibit better tradeoffs among the estimator’s resolution, system

complexity, and average sampling rate compared to their noncompressive counterparts. For

suitable sampling patterns, noncompressive estimates are obtained as least squares solutions.

Because of the non-negativity of power spectra, compressive estimates can be computed by

seeking non-negative least squares solutions (provided appropriate sampling patterns ex-

ist) instead of using standard CS recovery algorithms. This flexibility suggests a reduction

in computational overhead for systems estimating both sparse and nonsparse power spec-

tra because one algorithm can be used to compute both compressive and noncompressive

estimates.

1 Introduction

Compressed sensing (CS) is a data acquisition strategy that exploits the sparsity or compress-

ibility of a signal [1–4]. Typically, a signal is defined to be sparse if its representation in an

orthogonal basis contains only a few nonzero coefficients and is compressible if it can be well

approximated by a sparse signal. In its simplest setting, CS proposes to sample a sparse discrete

signal x ∈ R
n by acquiring m < n inner product measurements yl = 〈al,x〉, 0 ≤ l ≤ m, where al

are the rows of a m×n measurement matrix A. In matrix notation, y = Ax. Remarkably, CS

asserts that x can be accurately (if not exactly) reconstructed from the measurements y even

when the linear system of equations is underdetermined, provided A satisfies certain conditions.

When CS is applied to the problem of sampling continuous-time signals, it has been shown that

the undersampling of finite length vectors translates into sub-Nyquist sampling rates, where

CS provides the theoretical justification and tools to reconstruct the signal despite the spectral

aliasing that can occur [5–8].
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Figure 1: (a) An example of multi-coset sampling. Samples (dots) are acquired at nonuniformly

spaced points over LT seconds with additional samples acquired at the same relative points in

time over successive blocks of LT seconds. (b) Multi-coset sampler implemented as a multi-

channel system.

In this paper, we study the problem of estimating the power spectral density (PSD) of a

wide-sense stationary (WSS) random process within the context of a sub-Nyquist nonuniform

periodic sampling strategy known as multi-coset (MC) sampling [9–15]. Because of its nonuni-

form periodic nature, MC sampling is closely related to CS,1 and consequently, the proposed

estimator easily incorporates and exploits CS theory. The estimator however applies broadly,

and in particular, applies to cases where the PSD is not sparse.

For a fixed time interval T and for a suitable positive integer L, MC samplers sample an

input signal x(t) at the time instants t = (nL + ci)T for 1 ≤ i ≤ q, n ∈ Z, where the time

offsets ci are distinct, non-negative integers less than L (0 ≤ ci < L). The strategy is depicted

in Fig. 1. The sampling times are known collectively as the multi-coset sampling pattern and

the sets {(nL + ci)T : n ∈ Z, ci ∈ {0, . . . , L − 1}} are cosets of {nT : n ∈ Z}. Because T is

fixed throughout the paper, we simply refer to {ci} as the multi-coset sampling pattern instead

of the actual sampling times. MC samplers are parameterized by q, L, and {ci} and exhibit an

average sampling rate of q/LT Hz. They are most easily implemented as multichannel systems

as shown in Fig. 1 where channel i shifts x(t) by ciT seconds and then samples uniformly at

1/LT Hz.

Here, we assume a multichannel MC sampler and propose a novel nonparametric PSD

estimator based on the MC samples. The method estimates the average power within specific

subbands of a WSS random process. Hence it produces piecewise constant estimates that are

in contrast to those supported on a discrete frequency grid, e.g., the periodogram implemented

using the discrete Fourier transform (DFT). Moreover, the estimator does not use passband

filters to isolate subband signal components. Rather the estimator uses the spectral aliasing

that occurs in each channel to underpin the formation of a linear system of equations whose

solution is the PSD estimate of interest (see Section 2 for details).

We categorize the solutions to this linear system as either compressive or noncompressive

depending upon whether CS is employed in the recovery of the estimate. Compressive estimates

result from the application of CS theory and pertain to situations where the underlying power

spectrum is sparse and the linear system of equations is underdetermined. Noncompressive

1In fact, it can be formulated as a CS sampling strategy.
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Multi-coset PSD estimation

estimates pertain to cases where the linear system is overdetermined (or determined) with the

power spectrum’s sparsity being irrelevant. In both cases, the uniqueness of the recovered

estimates depends on the choice of the sampling pattern {ci} (not all sampling patterns lead

to unique solutions). Because of the special structure of the linear system, we show that in

some cases compressive estimates can be computed using a non-negative least squares (NNLS)

approach. This result is advantageous because in these cases it eliminates the necessity of

using two separate algorithms to compute compressive and noncompressive estimates. (Note

noncompressive estimates are normally computed as least squares solutions but can also be

computed using NNLS; see Section 3.2 for details).

The proposed method also indicates the regions within the (L, q) parameter space that allow

for compressive and noncompressive estimates, and it illustrates the associated tradeoffs among

quantities related to these parameters such as the estimator’s resolution or the number of MC

channels. By comparing these tradeoffs one can gauge the benefit of appling CS theory in cases

where the PSD is sparse. Perhaps surprisingly, the advantage of a compressive versus a noncom-

pressive estimate is not simply an improved sampling rate, but rather improved tradeoffs [16].

For example, for a fixed spectral resolution, a compressive estimate might achieve the same

accuracy as a noncompressive estimate but with a smaller number of channels. In addition, we

show that both compressive and noncompressive estimates are statistically consistent and show

that the noncompressive estimate is asymptotically efficient.

1.1 Related work

There is a growing literature in applying CS and other sub-Nyquist techniques to power spec-

trum estimation, most notably in the field of cognitive radios where there is a need to find

underutilized bandwidth in a crowded spectrum [17–22] Most pertinent to the present discus-

sion, however, is the work of Ariananda, Leus and Tian [18–20]. These papers also address

the problem of PSD estimation from sub-Nyquist samples specifically incorporating CS-based

sampling systems (including MC sampling). Notwithstanding similar goals and approaches,

the estimator proposed here differs in two significant aspects. First, their method estimates

the cross-correlations of the MC sample sequences and then recovers an estimate of the auto-

correlation sequence of the input random process (from which they form a periodogram estimate

of the PSD). In contrast, the method described here directly recovers a piecewise constant esti-

mate from the MC cross-correlation estimates. The main difference being that Araiananda et

al. estimate samples of the PSD whereas we estimate the average power within subbands. An

implication of this difference is that the method of Ariananda et al. is more computationally

expensive: their method requires the formation of a large q2 × L2 matrix in the construction

of their q2 × (2L − 1) measurement matrix; in contrast, we do not require the construction of

this large matrix for our smaller q(q − 1)/2 + 1×L measurement matrix. Second, we treat the

compressive case and address the statistical nature of our estimator (specifically taking into

account the finite availability of data), while Ariananda et al. do not.

1.2 Main contribution

In short, the paper’s main contribution is the development of a new nonparametric, statistically

consistent, piecewise constant PSD estimator based on sub-Nyquist MC samples. When the

underlying PSD is sparse, it seemlessly incorporates CS theory, letting the resulting compressive

3



Multi-coset PSD estimation

estimator exhibit better parametric tradeoffs compared to their noncompressive counterparts.

Moreover, when a suitable sampling pattern exists, a NNLS approach can be used to compute

compressive estimates, suggesting a possible savings in computational overhead for systems

estimating sparse and nonsparse power spectra.

2 A PSD approximation from multi-coset samples

In this section, we derive a piecewise constant PSD approximation assuming full knowledge of

the MC sequences. This approximation serves as the motivation and model for the noncompres-

sive and compressive estimators derived in Sections 3. In Section 4, we present three examples

illustrating the character and properties of the estimators.

2.1 PSD approximation

Let x(t) be a real, zero-mean, WSS random process with autocorrelation function

rxx(τ) , Ex(t1)x(t2), τ = t1 − t2. The Fourier transform (FT) Pxx(ω) of rxx(τ) is the PSD of

x(t) [23].

rxx(τ)
FT←−−−→ Pxx(ω)

The PSD quantifies the power in any given spectral band of x(t) and is a second order description

of the random process. Because rxx(τ) is real and symmetric, Pxx(ω) is also real and symmetric.

Throughout the paper, we assume x(t) is a band-limited process, meaning that Pxx(ω) vanishes

for |ω| > πW rad/s [23, p. 376]. For the MC sampling, we set T = 1/W thereby referencing

the average system sampling rate qW/L to the Nyquist rate W .

To estimate Pxx(ω) using MC samples, we examine the cross-correlations of the output

sequences yi(n) , x(n L
W + ci

W ), n ∈ Z. Let a and b denote two channels indices, then

ryayb(n,m) = E ya(n)yb(m)

= Ex
(
n L
W + ca

W

)
x
(
m L

W + cb
W

)

= rxx
(
L
W (n−m) + 1

W (ca − cb)
)

= rxx
(
L
W k + 1

W (ca − cb)
)

= ryayb(k)

(1)

where the third step follows from the wide-sense stationarity of x(t) and the substitution k =

n −m. From (1), we see that the cross-correlation function ryayb(k) is equivalent to shifting

the auto-correlation function rxx(τ) by
1
W (ca− cb) and then uniformly sampling it at W/L Hz.

These operations imply the following discrete time Fourier transform (DTFT) pair for k ∈ Z

and ω ∈ R,

ryayb(k) = rxx
(
L
W k + 1

W (ca − cb)
)

l DTFT

W

L

⌊
L
2

(
ω

πW +1
)⌋

∑

m=
⌈
L
2

(
ω

πW −1
)⌉
Pxx(ω − 2πW

L m)ej
1
W (ca−cb)(ω−2π

W
L m)

(2)
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t=nL/W

-Δci/W

-Δc1/W

-Δcq/W
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Δci/W
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y1(n) z1(n)

zi(n)
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yi(n)

yq(n)

x(t)

Figure 2: Block diagram of the multi-coset sampling system that shows the temporal shifting

before and after sampling.

where the relation follows from the shifting and sampling properties of the DTFT [24, p. 98,

117]. The summation limits are finite for a given ω because x(t) is assumed band-limited. (Here

we also assume L is even.)

The phase shift ej
1
W (ca−cb)ω in (2) arises from the time shifts introduced in the individual

channels. For our purposes, however, this phase shift needs to be removed. This can be

accomplished by shifting the sequences yi(n) by an amount equal to, but opposite, the initial

delays (see Fig. 2). Mathematically, this step can be expressed as

zi(n) , (yi ⋆ hi)(n), n ∈ Z, i = 1, . . . q (3)

where ⋆ denotes convolution and hi(k) = sinc(π(k − ci/W )), i = 1, . . . q, are the impulse re-

sponses of ideal fractional delay filters [25]. These filters are “fractional” in the sense that

the time shifts are a fraction of the sampling period L/W . For simplicity, we assume ideal

fractional delay filters throughout the paper. We note however that there is a large literature

concerning the design and analysis of digital fractional delay filters (see [25] and the references

wherein) ranging from highly accurate and computationally expensive filters to less accurate

and computationally inexpensive ones. The choice of design is largely application dependent

and a detailed analysis of the impact of imperfect fractional delay filters and is beyond the

scope of this paper.

By examining the cross-correlation functions rzazb(k), we see that the fractional delays

indeed delay ryayb(k) by (ca − cb)/W seconds.

rzazb(k) = E za(k + n)zb(n)

=
∑

m

∑

l

ha(m)hb(l)ryayb(k −m+ l)

=
∑

α

[∑

m

ha(m)ryayb(α−m)

]
hb(α− k) (4)

= ryayb(k) ⋆ ha(k) ⋆ hb(−k)
= ryayb(k) ⋆ ha−b(k) (5)

where the second step follows from (3), α = k + l, and ha−b(k) denotes the impulse of an ideal

fractional delay filter with delay (ca − cb)/W seconds.
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Multi-coset PSD estimation

Equation (5) also implies that the DTFT of rzazb(k) is the DTFT of ryayb(k) multiplied by

e−j
1
W (ca−cb)ω. Thus, by multiplying the frequency domain component in (2) by e−j

1
W (ca−cb)ω,

we obtain the following inverse DTFT relation

rzazb(k) =
1

2π

L/2∑

m=−L/2+1

e−j
2π
L (ca−cb)m

∫ πW/L

−πW/L
Pxx(ω − 2πW

L m) ejk
L
W ω dω.

(6)

Evaluating both sides of this equation at k = 0 produces a linear system of equations over the

set of all pairs (a, b) of channels:

rzazb(0) =

L/2∑

m=−L/2+1

e−j
2π
L (ca−cb)m

∫ πW/L

−πW/L
Pxx

(
ω − 2πW

L m
) dω

2π
︸ ︷︷ ︸

, Pxx(m)

.
(7)

This linear system is the basis for our estimator. For a given m, Pxx(m) equals the average

power of the process x(t) in the spectral subband [(2m − 1)πW/L, (2m + 1)πW/L]. Hence

the set { L
W Pxx(m)} forms a piecewise constant approximation to Pxx(ω). Its resolution equals

the width of the piecewise constant segments (W/L Hz) and is inversely proportional to L,

the parameter determining the period of the nonuniform samples. Larger L implies finer res-

olution; smaller L implies coarser resolution. The left hand side of (7) is a weighted sum of

the total average power of x(t). In Section 3, we propose a statistical estimator based on this

approximation that uses only a finite number of multi-coset samples. Like the approximation

{ L
W Pxx(m)}, the estimator is piecewise constant and thus does not estimate PSD amplitudes at

specific frequencies like standard parametric techniques or periodiogram estimates implemented

using the DFT.

Letting i index the
(q
2

)
+ 1 combinations2 of pairs (a, b), we can express (7) in matrix

notation,

u = Ψv (8)

where u ∈ R
q(q−1)/2+1, v ∈ R

L and

u = [u0, . . . , uq(q−1)/2]
T (T denotes transpose)

ui = rzazb(0)

Ψi,l = e−j
2π
L (ca−cb)iml

v = [v0, . . . , vL−1]
T

vl = Pxx(ml)

(9)

2In actuality, the total number of pairs is
(

q

2

)

+ q, but each of the q cases where a = b contributes a row of

ones to Ψ. Thus to avoid the row dependency, only a single row of ones is included in Ψ.

6



Multi-coset PSD estimation

for i = 0, . . . , q(q − 1)/2, l = 0, . . . , L− 1, and ml = −L/2 + 1 + l. The number of equations in

this linear system can be doubled by separating Ψ and u into their real and imagery parts:

[
Re(u)

Im(u)

]

︸ ︷︷ ︸
, ũ

=

[
Re(Ψ)

Im(Ψ)

]

︸ ︷︷ ︸
, Ψ̃

v (10)

where ũ and Ψ̃ have dimensions q(q − 1) + 1× 1 and q(q − 1) + 1× L, respectively.

To calculate the PSD approximation, one would compute the set of cross-correlation values

{rzazb(0) = E za(n)zb(n)} for all pairs (a, b) and solve (10) for v. Here we briefly consider two

types of solutions, deferring a more detailed discussion until after the estimator is presented

in Section 3 (see in particular Sections 3.2 and 3.3). First, we consider least squares solutions

when Ψ̃ is full rank (rank L) and (10) is overdetermined. Such solutions are referred to as

noncompressive. Second, we consider CS solutions when (10) is underdetermined and v is

sparse in the sense that only a few of its entries are nonzero. These solutions are termed

compressive.

The existence of a unique least squares solution depends on the (column) rank of Ψ̃ which in

turn depends on the sampling pattern {ci}. In particular, a sampling pattern must be chosen

such that Ψ̃ has rank L (implying that q(q − 1) + 1 ≥ L, or equivalently, that the number

of rows of Ψ̃ is greater than or equal to the number of columns). In Section 3.2, we discuss

two methods for constructing sampling patterns that produce full rank Ψ̃, but given such a

sampling pattern, the unique least squares solution is

vNC , argmin
α

‖Ψ̃α− ũ‖22
= (Ψ̃T Ψ̃)−1Ψ̃T ũ

(11)

where ‖·‖2 denotes the ℓ2 norm, (Ψ̃T Ψ̃)−1Ψ̃T equals the pseudoinverse of Ψ̃, and the subscript

NC indicates that the approximation is noncompressive. If q(q − 1)/2 + 1 = L and Ψ̃ is

nonsingular, we simply have vNC = Ψ̃−1ũ.

Now, suppose Pxx(ω) is spectrally sparse, i.e., suppose its support has Lebesgue measure

that is small relative to the overall bandwidth. In addition, suppose q(q − 1) + 1 < L such

that (10) is an underdetermined linear system of equations. Then from a CS perspective, v

is the sparse vector of interest that is to be recovered from the linear measurements ũ, and

Ψ̃ is a (subsampled Fourier) measurement matrix. The vector v is sparse because its entries

represent the average power of x(t) in the subbands [(2m − 1)πW/L, (2m + 1)πW/L] and

Pxx(ω) is presumed to be sparse. In this situation, a host of CS recovery algorithms may be

used to compute compressive approximations vC provided an appropriate sampling pattern

and a sufficient number of measurements for a given level of sparsity (see e.g., [26–28]). For

example, for a suitable sampling pattern, the convex optimization problem

min
α

‖α‖1 subject to ũ = Ψ̃α, (12)

would yield a compressive approximation if O(S log4 L) measurements were acquired [29], where

‖·‖1 denotes the ℓ1 norm and S denotes the number of nonzero entries in v. In Section 3.3,

we further exploit the structure of this linear system and advocate an algorithm that does not

require an explicit sparsity constraint in the recovery procedure.

7



Multi-coset PSD estimation

3 Proposed multi-coset PSD estimator

The above PSD approximation is predicated on full knowledge of the output sequences yi(n), or

equivalently, on having access to an infinite amount of data (an infinite number of multi-coset

samples). In this section, we derive and characterize an estimator based on (8) that explicitly

accounts for the finite availability of data.

3.1 PSD estimation

Again, let x(t) by a real, band-limited, zero-mean WSS random process with PSD Pxx(ω). We

observe x(t) over a finite duration interval and hence model the observed signal xD(t) as a

windowed version of x(t):

xD(t) , x(t)wR(t) (13)

where

wR(t) =

{
1 0 ≤ t ≤ D

0 otherwise.
(14)

The MC samples of the windowed process xD(t) are

yNi (n) , xD( 1
W (nL+ ci))

= x( 1
W (nL+ ci))wR(

1
W (nL+ ci)),

(15)

for n = 0, . . . , N−1 and i = 1, . . . , q, where N = DW/L equals the number of samples acquired

per channel during the D second observation interval. (Here N is assumed to be an integer.)

The fractionally delayed samples are (c.f. (3))

zNi (n) , (yNi ⋆ hi)(n) (16)

where again N signifies the number of samples3.

Let a and b denote the indices of two channels. Then, given zNa (n) and zNb (n), the cross-

correlation function rzazb(k) can be estimated by the sample correlation

r̂N
zazb

(k) =
1

N

N−|k|−1∑

n=0

zNa (k + n)zNb (n), (17)

for 0 ≤ |k| ≤ N − 1. Mimicking the standard derivation of a periodogram (see e.g. [30, p.321]),

we find the DTFT of r̂N
zazb

(k) to be

r̂N
zazb

(k)
DTFT←−−−−→ 1

N

[
ZN
a (ejω

L
W )

][
ZN
b (ejω

L
W )

]∗
(18)

where ZN
a (ejω

L
W ) and ZN

b (ejω
L
W ) are the DTFT of zNa (n) and zNb (n) respectively. The transform

ZN
a (ejω

L
W ) may be further decomposed in terms of Y N

a (ejω
L
W ) and XD(ω) where

xD(t)
FT←−−−−→ XD(ω)

yNa (n)
DTFT←−−−−→ Y N

a (ejω
L
W ).

(19)

3A perfect fractional delay filter has an infinite impulse response hi(n) = sinc(π(n − ci/W )) and thus the

sequence zNi (n) has, strictly speaking, infinite duration. However, in (16) we only consider N output samples

zNi (n), n = 0, 1, . . . , N − 1. We do not include another windowing operation because zNi (n) will be finite for any

practical, realizable filter.
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Multi-coset PSD estimation

Specifically, for ω ∈ R, we have from (15) and (16) that

ZN
a (ejω

L
W ) = Y N

a (ejω
L
W )e−j

ca
W ω

=
W

L

∞∑

m=−∞

XD(ω − 2πW
L m)e−j

2π
L cam.

(20)

Because xD(t) is time limited, it cannot, strictly speaking, be band-limited. However, for

sufficiently long windows it is reasonable to assume that the vast majority of the energy of

xD(t) lies within the band (−πW,πW ], i.e., it is reasonable to assume that with sufficiently

long windows xD(t) is essentially band-limited to the same band as x(t). With this assumption,

one period of ZN
a (ejω

L
W ) is well approximated by the finite summation,

ZN
a (ejω

L
W ) =

W

L

L
2∑

m=−L
2
+1

XD(ω − 2πW
L m)e−j

2π
L cam. (21)

Substituting (21) for ZN
a (ejω

L
W ) in (18) (along with a corresponding expression for

ZN
b (ejω

L
W )) and evaluating the inverse DTFT at zero yields

r̂N
zazb

(0) =
∑

m

∑

n

e−j
2π
L (cam−cbn)

∫ πW/L

−πW/L

1

D
XD

m(ω)[XD
n (ω)]∗

dω

2π
,

(22)

where XD
m(ω) is shorthand notation for XD(ω − 2πW

L m).

We observe that for m = n, the integrands, 1
D

∣∣XD
m(ω)

∣∣2,m = −L/2 + 1, . . . , L/2, are

periodogram estimates of L disjoint subbands of Pxx(ω), and the corresponding integrals

P̂xx(m) ,

∫ πW/L

−πW/L

1

D

∣∣XD
m(ω)

∣∣2 dω

2π
(23)

are estimates of the power within these subbands. The set { L
W P̂xx(m)} thus constitutes a

piecewise constant estimate of Pxx(ω) at resolution W/L.

In contrast, the cross terms in (22) (i.e., terms for which m 6= n) asymptotically approach

zero as D, or equivalently N , grows large. To see this, rewrite the integrand in (22) as

1

D
XD

m(ω)[XD
n (ω)]∗

=
1

D
XD(ω − 2πW

L m)[XD(ω − 2πW
L n)]∗

=

∫ ∞

−∞
WR(α)X(ω − 2πW

L m− α)
dα√
D

×
∫ ∞

−∞
W ∗

R(β)X
∗(ω − 2πW

L n− β)
dβ√
D
,

(24)
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Multi-coset PSD estimation

where WR(ω) = D sinc(D2 ω)e
−j

D
2 ω is the FT of the rectangular window wR(t), X(ω) is the FT

of x(t) appropriately defined (see [23, p. 416]), and

sinc(α) =

{
1, if α = 0

sin (α)/α, otherwise
.

As D → ∞, WR(ω) approaches a delta function [31, p. 280]; however because of the factors

1/
√
D, the integrals approach zero as D →∞ for m 6= n.

Because of this fact, we choose to approximate r̂N
zazb

(0) using only the terms m = n in (22)

r̂N
zazb

(0) ≈
∑

m

e−j
2π
L (ca−cb)m P̂xx(m). (25)

Letting i index all pairs (a, b), we arrive at an empirical counterpart to (8)

û = Ψv̂ (26)

where

û = [û0, . . . , ûq(q−1)/2]
T

ûi = r̂N
zazb

(0)

Ψi,l = e−j
2π
L (ca−cb)iml

v̂ = [v̂0, . . . , v̂L−1]
T

v̂l ≈ P̂xx(ml)

(27)

for i = 0, . . . , q(q − 1)/2, l = 0, . . . , L − 1, and ml = −L/2 + 1 + l. Similar to (10), we can

double the number of equations by separating the real and imagery parts of Ψ and û:

˜̂u = Ψ̃v̂ (28)

where ˜̂u = [Re(û) Im(û)]T and Ψ̃ ∈ R
q(q−1)+1×L is defined in (10). In this equation, v̂ is the

PSD estimator we wish to solve for.

3.2 Noncompressive solutions (overdetermined case)

A unique least squares solution to (28) exists if Ψ̃ has full column rank, i.e., rank(Ψ̃) = L. Full

rank implies q(q−1)+1 ≥ L, or that the system is overdetermined (here we treat a determined

system as a special case of the overdetermined one). In this case, a noncompressive estimate

can computed using the pseudoinverse

v̂NC , (Ψ̃T Ψ̃)−1Ψ̃T ˜̂u, (29)

where (Ψ̃T Ψ̃)−1Ψ̃T is the pseudoinverse of Ψ̃. A solution of this type is noncompressive because

it does not rely on CS theory, and in particular, it does not require v̂ to be sparse.

For a fixed L, a full rank Ψ̃ requires (i) choosing q large enough such that q(q− 1) + 1 ≥ L

and (ii) choosing a sampling pattern such that rank(Ψ̃) = L. The first condition is required

since q(q − 1) + 1 < L implies rank(Ψ̃) < q(q − 1) + 1, regardless of the sampling pattern.

The second condition is necessary since there exists sampling patterns that lead to Ψ̃ having

10
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Figure 3: Four scenarios showing that random sampling patterns can produce well-conditioned,

full rank Ψ̃ after some threshold point in the noncompressive case. Left: Fraction of times

random patterns produce full rank Ψ̃ for different (L, q) values. Right: Corresponding condition

numbers.

a non-empty nullspace even if q(q − 1) + 1 ≥ L, meaning that the least squares solution is no

longer unique. Section 3.4 discusses the tradeoff between q and L imposed by the first condition

assuming the second condition is met. Here we address the second condition.

Fig. 3 offers empirical evidence suggesting that generating a sampling pattern uniformly at

random from {0, . . . , L − 1} can be a simple and effective way of constructing a full rank Ψ̃,

provided the ratio of its dimensions L
q(q−1)+1 is small enough. The plots show the results from

four trials corresponding to four different values of L. For each trial, L was fixed and q was

allowed to range from its minimum value—the smallest integer value satisying q(q−1)+1 > L—

to its maximum value L − 1. For each (L, q) pair, 500 sampling patterns (of length q) were

generated and the fraction of those that produced full rank Ψ̃ are recorded in the left hand

plot. The right hand plot displays the average condition number of Ψ̃ in each case. Both plots

suggest that after some threshold point random sampling patterns consistently produce well-

conditioned and full rank matrices for the noncompressive problem. For the four cases shown,

the threshold occurs when the ratio L
q(q−1)+1 roughly equals 0.12, but a formal treatment of

this phenomenon is beyond the scope of this paper.

For larger L
q(q−1)+1 ratios (still falling within the noncompressive problem), full rank Ψ̃ can

sometimes be constructed by choosing the sampling pattern to be a Golomb ruler [32]. Golomb

rulers are integer sets whose difference sets contain unique elements. The cardinality of the

integer set is the ruler’s order and the largest difference between two integers is its length.

The idea is that the integers represent marks on an imaginary ruler and the elements of the

difference set are all the lengths that can be measured by the ruler. The goal in the study of

Golomb rulers is to find the minimum length rulers for a given order. In the present context,

however, we are only interested in using already tabulated rulers. For example, for L = 64 and

q = 10, one can take the minimum-length order-10 ruler to be the sampling pattern

{ci}10i=1 = {1, 2, 7, 11, 24, 27, 35, 42, 54, 56}.

Note that the ruler’s length, 55, is less than L = 64 as it should be for MC sampling. This

pattern yields a full rank Ψ̃ with condition number 1.4 whereas in Fig. 3 random patterns

11



Multi-coset PSD estimation

never produced a full rank matrix out of 500 test cases. The implication of this improvement

is somewhat limited however because there are relatively few known (up to order 26) minimum

length Golomb rulers. For instance with L = 1024, the minimum q value is 33, but there

are no known minimum length Golomb rulers with orders greater than 26. When applicable,

Golomb ruler sampling patterns can be an effective means to obtain a full rank Ψ when the

ratio L
q(q−1)+1 is near the threshold value. Note also that Ariananda et al. advocate the use

of Golomb rulers in their study of multi-coset PSD estimation, but they used it to ensure the

rank of a binary matrix [20].

To summarize the foregoing, one computes a noncompressive estimate by fractionally de-

laying each channel of MC samples yNi (n), i = 1, . . . , q, computing the cross-correlation values

{r̂N
zazb

(0)}, and solving (26) via (29).

3.3 Compressive solutions (underdetermined and sparse case)

When (28) is underdetermined and the sampling pattern is chosen uniformly at random from

{0, . . . , L − 1}, Ψ̃ is a randomly subsampled DFT matrix which is a well-known type of CS

measurement matrix. Thus a number of CS recovery algorithms (e.g., [26–28]) will solve (28),

provided v̂ is sparse and the number of CS measurements (length of ˜̂u) is sufficient. However,

because (28) has special structure, the usual CS recovery algorithms may be replaced by a

non-negative least squares approach. This claim rests on the following result of Donoho and

Tanner [33] (see also [34]):

Corollary 1 ( [33], Corollary 1.4 and 1.5). Assume d is even and for n = 0, 1, 2, . . . , L− 1, let

A ∈ R
d×L be the partial DFT matrix (d < L)

Ak,n =




cos

(
πkn
L

)
k = 0, 2, 4, . . . , d− 2

sin
(
π(k+1)n

L

)
k = 1, 3, 5, . . . , d− 1

Let x be a non-negative s-sparse vector, i.e., let x have at most s nonzero positive entries.

Then given the linear measurements b = Ax, any approach that solves the linear system and

maintains nonnegativity will correctly recover the s-sparse solution x, provided d ≥ 2s.

The corollary says that when x is s-sparse and non-negative, one needs only 2s Fourier

measurements to uniquely recover it. Moreover, the theorem states that x can be recovered

using any algorithm that produces a nonnegative solution to Ax = b. The fact that a L

dimensional s-sparse vector x can be recovered from only d < L Fourier measurments is an

archetypical CS result. However, in contrast to typical CS recovery strategies, signal recovery

in this case does not require explicit use of a sparsity constraint like ℓ1 minimization (see for

example (12)). The reason is that this result is a specific case of a more general phenomenon in

the recovery of sparse nonnegative vectors for underdetermined linear system of equations. In

essence, it is known that if the row span of a measurement matrix intersects the positive orthant

and if the vector to be recovered is nonnegative then the solution to the underdetermined linear

system is a singleton, provided the vector of interest is sparse enough [35, 36] (see also [37]).

This finding is key since it implies that compressive PSD estimates can be obtained in a manner

similar to noncompressive estimates, i.e., they can be obtained using NNLS (more about this

point in a moment).

12
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The application of Corollary 1 to (28) is straightforward. The required matrix A is a

permuted version of Ψ̃ provided the sampling pattern is chosen such that the set of differences

(ca − cb) form the consecutive sequence 0, 1, 2, . . . , s − 1. In particular, A can be constructed

from Ψ as

Ak,n =

{
Re{Ψk/2,n} k = 0, 2, 4, . . .

Im{−Ψ(k+1)/2,n} k = 1, 3, 5, . . .
(30)

The value for q is chosen such that q(q−1)+1 ≥ 2s, i.e., such that the number of measurements

(length of ˜̂u) is greater than twice the sparsity.

One strategy to construct a sampling pattern that forms the difference set {0, 1, 2, . . . , s−1}
is to again use Golomb rulers. Most Golomb rulers do not produce a difference set that is a

consequence sequence up to its length, but because differences do not repeat for Golomb rulers,

they tend to furnish nearly consecutive sequences. For example, the order-7 minimum length

ruler {1, 3, 4, 11, 17, 22, 26} produces the difference set:

{0, 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
13, 14, 15, 16, 18, 19, 21, 22, 23, 25}

(31)

which nearly forms the consecutive sequence 0, . . . , 25, missing only the elements 12, 17, and 20.

In Section 4.2, we present an example that uses this sampling pattern to successfully recover

a 16-sparse vector v̂C . If an appropriate Golomb ruler (sampling pattern) does not exist for a

given L and s, one can use other CS recovery approaches (e.g., ℓ1 minimization, CoSaMP [27],

or iterative hard thesholding [28]) with a randomly generated sampling pattern.

The non-negativity requirement of Corollary 1 for v̂ is met asymptotically as N →∞. This

claim can be inferred from Section 3 where it is shown that the entries of v̂ approach integrated

periodogram estimates, which are non-negative by construction (see (22) through (25)). For

PSD estimation, the non-negativity requirement is natural since by definition power spectra

are non-negative.

When Corollary 1 can be applied, we compute compressive estimates v̂C using NNLS:

v̂C = argmin
α

‖Ψ̃α− ˜̂u‖22 subject to α ≥ 0, (32)

which is an optimization problem that can be solved via a linear program. Choosing a NNLS

approach for compressive estimates is advantageous because noncompressive estimates can also

be computed using a NNLS algorithm (and is perhaps preferred since v̂NC can be negative; see

Fig. 8).

3.4 Tradeoffs in noncompressive case

Given a sampling pattern that produces a full column rank Ψ̃, the relation q(q − 1) + 1 ≥ L

establishes a tradeoff between q and L (Fig. 4) and tradeoffs among other related quantities

(Fig. 5). For example, it establishes a tradeoff between system complexity and the estimate’s

resolution, where here system complexity is simply taken to be the number of channels q. As

the left hand plot in Fig. 5 shows, finer resolution (smaller W/L) comes at the price of higher

system complexity. As a concrete example, consider a WSS signal x(t) band-limited to 1 GHz

and a desired resolution of 5 MHz, implying L = 400. A noncompressive solution would then

require at least 21 channels; however, if a resolution of 15 MHz suffices, the number of channels

could be reduced to 13 (see Fig. 5).
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Figure 4: Tradeoffs between parameters q and L. The lightly shaded areas in both plots de-

marcate regions in the parameter space where noncompressive estimates exist given that Ψ̃

is full rank. The bounding curve is q(q − 1) + 1 = L. The darker shaded areas are regions

where compressive estimates exist and represent the possible gains in terms of improved param-

eter tradeoffs over the noncompressive case. The compressive regions derive from the specific

scenario where v̂ is 16-sparse at resolution L = 128.

If one has the the freedom to choose q and L, the ratio q/L can be driven to zero even while

maintaining the inequality q(q − 1) + 1 ≥ L. This means that noncompressive estimates can

theoretically be computed at arbitrarily low sampling rates and at finer and finer resolutions

(see right hand plot of Fig. 5). Estimation at arbitrarily low sampling rates is a property shared

with exisiting alias-free PSD estimators [38–42] that are based on random sampling where the

set of sampling instances are (typically) realizations of a stochastic point process (e.g., a Poisson

point process). Arbitrarily low sampling rates and arbitrarily fine resolutions, however, require

arbitrarily high numbers of channels and arbitrarily long signal acquisition times. Thus in

practical noncompresive situations, an appropriate balance needs to be struck between q and

L that satisfies the requirements of a given application. Section 4.1 provides evidence of this

tradeoff in a specific example.

3.5 Improved tradeoffs in compressive case

With sufficient sparsity, (28) can be uniquely solved even if it is underdetermined, i.e., even

if q(q − 1) + 1 < L [1, 3, 4]. This means that compressive estimates v̂C can be computed with

better q − L tradeoffs compared to noncompressive ones, i.e., for a given L, a compressive

estimate can be recovered with a smaller q than what is possible for a noncompressive estimate,

or conversely, for a given q, a compressive estimate can be recovered with a larger L.

The degree of the gain depends on the level of sparsity of v̂ at a specific resolution L. Let

s denote the sparsity (number of nonzero elements) of v̂ at resolution L. Then according to

Corollary 1, a compressive estimate can be computed with 2s or more Fourier measurements.

Because the number of measurements in (28) equals q(q − 1) + 1 (length of ˜̂u), the need for

2s measurements sets a minimum q. Since compressive estimates pertain to underdetermined

linear systems, the condition q(q−1)+1 < L sets a maximum q. To apply Corollary 1, however,

a sampling pattern of length q must exist that produces the set of differences 0, ..., s − 1. If
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Figure 5: Tradeoffs among resolution, system complexity, and system sampling rate. Left:

The progression from point (1) to point (2) shows that for a noncompressive estimator the

reduction in the number of channels comes at a price of coarser resolution. However, for a

16-sparse vector v̂ at resolution 15 MHz, a compressive estimator can reduce the number of

channels to 7—progression from (2) to (3). Right: Corresponding tradeoff between resolution

and system sampling rate.

sampling pattern does not exist for the minimum q value, larger q values must be considered.

Thus, for a compressive estimate, the value of q depends on the sparsity of v̂ (for a given L)

and on the availability ability of an appropriate sampling pattern. We discuss specific examples

in the next paragraph. Note that if an alternative CS recovery algorithm is used to solve (28)

instead of applying Corollary 1, larger q values will be needed for a given s (and L) because

these algorithms required larger numbers of measurements.

We illustrate the improved tradeoffs in two scenarios each of which are based on the pre-

sumption that v̂ is a 16-sparse vector at resolution L = 128 (v̂ ∈ R
128). The results are

graphically shown in Fig. 4. As described above, the light shaded regions represent the (L, q)

pairs for which noncompressive estimates can be computed4, and are bordered by the curve

q(q − 1) + 1 = L. The darked shaded regions in each panel represent the (L, q) pairs for which

compressive estimates can be computed. The difference between the compressive regions on the

left and right plots is that the region on the left presumes s changes with L and the one on the

right presumes s is independent of L, i.e., it remains constant as L varies. In the left hand plot,

we assume s doubles every time L doubles. Thus, in comparison to the initial presumption

s = 16 at L = 128, we assume s = 32 at L = 256 which implies a mimimum q = 9. This

behavior models the situation where the active subbands of x(t) at resolution L = 128 contain

energy at every frequency within the subband, so as the subbands are subdivided, s increases.

The scenario on the right reflects the situation where the active subbands only contain energy

at one specific frequency, so s remains constant as L increases.

To judge the implications of these tradeoffs, we examine the associated tradeoffs among

system complexity (q), resolution (W/L), and average system sampling rate (qW/L) in Fig. 5.

As above, the compressive regions are drawn under the presumption that s = 16 for L =

128. The plots, however, are only for the case where s is independent of L. Intuitively, this

4Again, the ability to compute a noncompressive estimate for a valid (L, q) pair also depends on whether a

suitable sampling pattern can be found.
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represents a best case scenario in terms of “CS gain” over the noncompressive case (best possible

improvements in q for a fixed L and in L for a fixed q). The left hand panel shows system

complexity as a function of resolution W/L where W = 2 GHz. The right hand panel plots

resolution versus system sampling rate. The plots show that for this particular scenario, a CS

approach can have appreciable benefits when the underlying PSD is sparse. For example, in

Section 3.4 we stated that the recovery of v̂ with a resolution of 15 MHz required a 13 channel

MC sampler for a noncompressive estimator. However, for a 16-sparse vector v̂, a compressive

estimate with the same resolution can be recovered with only q = 7 channels, a reduction of

almost 1/2. This gain is depicted in Fig. 5 as the shift from point (2) to point (3). The same

reduction factor can also be seen in average system sampling rate (right hand plot of Fig. 5).

These improved tradeoffs may or may not effect the error in the recovered estimate. If

L is held fixed and v̂ is sparse, then as described above, q can be reduced to the smallest

integer such that q(q − 1) + 1 > 2s (according to Corollary 1). This reduction in q reduces

the overall system sampling rate; however, the error in the recovered compressive estimate is

not significantly different from the error in a corresponding noncompressive estimate because

CS theory guarantees accurate (if not exact) recovery of v̂. Now, if q is held fixed and L is

increased, the sampling rate of each channel decreases. Thus, if the observation interval is

fixed, the correlation estimates ûi become worse (in the sense that their error is larger) because

less and less samples are used to compute ûi. In this case, CS still allows the recovery of an

estimate, but its quality is declining as L increases. To maintain accuracy, one must increase

the observation interval and collect more samples per channel.

3.6 Consistency of the noncompressive estimator

To simplify notation, we examine the bias and variance of the least squares solution to û = Ψv̂

instead of the solution of the expanded version ˜̂u = Ψ̃v̂. The analysis is equivalent in either

case. Assuming Ψ is full rank, the noncompressive solution is

v̂NC = (ΨHΨ)−1ΨH û

= Ψ†û,

where H denotes Hermitian transpose and Ψ† is shorthand notation for the pseudoinverse.

Bias. The bias of v̂NC is the amount its expected value differs from vNC = Ψ†u. Taking

the expectation, we have E v̂NC = Ψ†
E û. One element of E û equals

E ûi = E r̂N
zazb

(0) (33)

=
1

N

∞∑

m=−∞

∞∑

l=−∞

ha(m)hb(l)

N−1∑

n=0

E [ya(n −m)yb(n− l)]wR(n−m)wR(n− l)

(34)

=
∑

m

∑

l

ha(m)hb(l)ryayb(l −m)

1

N

N−1∑

n=0

wR(n−m)wR(n− l).

(35)
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where, as in (27), i is an index for the pair (a, b), the second equality follows from (16) and (17),

and wR(n) is a discrete rectangular window

wR(n) =

{
1 0 ≤ n ≤ N − 1

0 otherwise.

It is straightforward to show that

1

N

N−1∑

n=0

wR(n−m)wR(n− l)

=

{
1− |m−l|

N |m− l| ≤ N − 1

0 |m− l| > N − 1.

(36)

By substituting this expression back into (35), it is clear that v̂NC is a biased estimate for finite

N ; however asympotically, v̂NC is unbiased since

E ûi
N→∞
=

∑

m

∑

l

ha(m)hb(l)ryayb(l −m) (37)

= rzazb(0) (from (4)) (38)

= ui. (39)

implies E v̂NC = Ψ†
E û→ Ψ†u = v as N →∞.

Variance. The covariance matrix of v̂NC is

E
(
v̂NC − E [v̂NC ]

)(
v̂NC − E [v̂NC ]

)H

= Ψ†
E (û− E û)(û− E û)H︸ ︷︷ ︸

, K

[Ψ†]H (40)

where K is the covariance matrix of û. The diagonal elements of (40) are the variances of the

elements of v̂NC :

var
(
v̂l
)
=

∑

i

∑

j

Ψ
†
l,jKi,jΨ

†
l,i, l = 0, . . . , L− 1 (41)

whereKi,j = covar
(
ûi, ûj

)
. Note that in (41) we have dropped the subscriptNC in our notation

for the elements of v̂NC . To show that var
(
v̂l
)
→ 0 as N →∞, we proceed to upper bound (41)

with a sequence in N that approaches zero as N →∞.

First, we note that the inequality [covar
(
ûi, ûj

)
]2 ≤ var

(
ûi
)
var

(
ûj
)
[43, p. 336] implies

|covar
(
ûi, ûj

)
| ≤

√
var

(
ûi
)
var

(
ûj
)
. (42)

Second, for the correlation estimate ûi = r̂N
zazb

(0) it is well-known [30, p. 320] that5

var
(
r̂N
zazb

(0)
)
≈ 2

N

N−1∑

m=−(N−1)

(
1− |m|

N

)
r2zazb(m). (43)

5The reason for the approximation in (43) is that this expression is derived assuming that za(n) and zb(n)

are jointly Gaussian; however, the result applies to other distributions as well [30].
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Hence, if r2zazb(m) is square-summable, var
(
r̂N
zazb

(0)
)
= var

(
ûi
)
approaches zero as N → ∞.

Bound (41) by

var
(
v̂l
)
≤

∑

i

∑

j

|Ψ†
l,j | |Ki,j | |Ψ†

l,i|. (44)

Then from (42) and (43), we conclude that var
(
v̂l
)
, and thus var

(
v̂NC

)
, approach zero as

N →∞.

The noncompressive estimator v̂NC is thus statistically consistent since it is asymptotically

unbiased and since its variance decreases to zero as N →∞. Incidentally, if x(t) is a zero-mean

Gaussian WSS random process, v̂NC is also asymptotically efficient [43, p. 471], meaning that

the variance of the limit distribution of v̂NC achieves the Cramér-Rao bound. As we show

in the Appendix, asymptotic efficiency follows from the fact that û is a maximum likelihood

estimate of u.

3.7 Consistency of the compressive estimator

A detailed analysis of the compressive estimator’s consistency is beyond the scope of this paper

because it depends on the specific CS recovery algorithm is employed. Nevertheless, compressive

estimates are consistent in the sense that ideally sparse vectors v̂ can be exactly recovered by

some CS recovery algorithms, and thus the consistency of û (as shown above) implies the

consistency of v̂C .

4 Examples

4.1 Estimating MA spectra with lines

Consider sampling a (nonsparse) moving average power spectrum with spectral lines using a 50

channel MC sampler (q = 50, L = 64). The process is generated by passing white noise (with

unit variance) through a filter with transfer function H(z) = (1 − z−1)(1 + z−1)3 and then

adding the two sinusoidal components, 2 cos
(
8πk
17

)
and 2 cos

(
11πk
20

)
. Fig. 6(a) shows the true

PSD. Fig. 6(b) and Fig. 6(c) show two resulting noncompressive estimates for different values of

N , the number of MC samples per channel. For comparison, a coarse resolution approximation

of the true PSD is overlaid on the estimates. Because v̂NC is consistent, its mean squared

error with respect to this coarse resolution approximation decreases to zero as N → ∞. This

is depicted in Fig. 6(c). Fig. 7 further illustrates the consistency of v̂NC within the context of

this example for various (L, q) values. In each case, the average squared error monotonically

decreases as N increases.

4.2 Sparse multiband power spectra

Suppose a real WSS random process x(t) has a sparse multiband power spectrum band-limited

to 1 GHz (W = 2 GHz). Suppose also that we are interested in a PSD estimate having a

resolution of about 15 MHz. To satisfy this requirement we choose L = 128 which gives a

resolution of 15.625 MHz. Suppose also that the sparse PSD is composed of two active bands,

each with an approximate bandwidth of 30 MHz. Being conservative, we thus expect v to be a

16-sparse vector (including positive and negative frequencies with each active band taking up

4 adjacent subbands).
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(c) q=50, L=64, N=10000

Figure 6: Estimating MA spectra with lines. (a) True power spectrum. (b) Overlay plot of a

noncompressive estimate and a coarse resolution approximation of the true power spectrum.

The height of the bars represent the average power in the band which it spans. (c) Estimate

of same spectrum except the number of samples per channel, N , increased from 50 to 10000.

Note the convergence of the noncompressive estimate.
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Figure 7: Decrease in average squared error for various noncompressive scenarios as N →∞.
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(b) q=7, L = 128, N = 1000 (underdetermined)
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(c) q=7, L=128, N=10000 (underdetermined)
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Figure 8: Estimating sparse multiband power spectra. The overlay plots compare compressive

and noncompressive estimates to a coarse resolution Welch estimate (black) based on Nyquist

rate samples. (a) Noncompressive estimate (magenta) with random sampling pattern. (b)-(c)

Compressive estimates (blue) with Golomb ruler sampling pattern. (d) Minimum norm least

squares estimate (red) in underdetermined case.
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The PSD can be estimated in either a noncompressive or a compressive manner. Choosing

q = 20, leads to an overdetermined system in (21) (q(q − 1) + 1 = 381 ≥ 128 = L) and

a noncompressive estimate. Fig. 8(a) shows the resulting noncompressive estimate with a

normalized square error of 0.010. The error is calculated with respect to a coarse Welch estimate,

i.e., it has the same resolution as the noncompressive estimate. The Welch estimate is based

on uniform Nyquist rate samples and is computed with no overlap. The sampling pattern was

chosen uniformly at random from the set {0, . . . , 127} and it was verified that Ψ̃ had full rank.

The fractional delays were implemented by interpolating the MC sequences to the Nyquist rate,

shifting them by the appropriate delays, and then subsampling them to the original rate. Each

channel collected 1000 MC samples and the average system sampling rate was about 1/6 of the

Nyquist rate.

According to Corollary 1, the number of measurements required to recover a 16-sparse vector

needs to be greater than or equal to 32. This implies that q needs to be at least 7 because the

number of measurements in (28) equals q(q−1)+1 and for q < 7 this quantity is less than 32. In

addition, Corollary 1 requires that the sampling pattern produces the set of differences 0, . . . , 15

for a 16-sparse signal. Fortunately, a Golomb ruler of order 7 ({ci} = {1, 3, 4, 11, 17, 22, 26})
exists that produces the necessary difference set. Fig. 8(b) shows the resultant compressive

estimate (normalized squared error 0.023). The reduction in the number of channels from 13

to 7, in going from the noncompressive to the compressive estimator, reduces the complexity

of the sampler, or equivalently, halves the average system sampling rate.

Fig. 8(c) displays the same compressive estimate as in Fig. 8(b) except that it is computed

with 10000 samples per channel instead of 1000. The normalized squared error is 0.013. In

contrast to this figure, Fig. 8(d) shows the minimum (ℓ2) norm least squares solution computed

by the pseudoinverse. As one would expect, this solution is far from the true PSD and does

not improve with more samples.

4.3 Spectral sensing for cognitive radio

To opportunistically use their resources, cognitive radios must be able to dynamically sense

underutilized portions of the radio spectrum. Towards this end, methods and algorithms have

recently been proposed to sense the largest possible bandwidth while sampling at the lowest

possible rate [19]. Some of these methods have taken advantage of CS, but the following example

shows that a noncompressive estimator can monitor large bandwidths at low sampling rates

(although, as explained above, CS will allow better tradeoffs with a compressive estimator).

This example is only a caricature of the actual problem that must be solved to realize a

practical cognitive radio system. Let x(t) be a MA random process generated from filtering

white Gaussian noise with a notch filter. The filter notches the spectrum such that it has

approximately two 80 MHz stop bands within an overall band of 1 GHz (W = 2 GHz). Fig. 9

shows two noncompressive estimates and compares them to a Welch estimate of the same

resolution and calculated using Nyquist samples. The left plot sets q = 25 and L = 64 and the

right plot sets q = 50 and L = 128, meaning that the resolution of left hand estimate is half the

resolution of the right hand estimate (half as fine) and that the sampling rate per channel on

the left is twice that of the right (31.25 MHz vs 15.625 MHz) In each case, however, the overall

average system sampling rate is the same (781.25 MHz). The noncompressive estimate on the

left is formed with 4096 MC samples per channel, the one on the right with 2096 samples.

Both plots suggest that spectral holes could be detected simply by thresholding the estimates

21



Multi-coset PSD estimation

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized frequency (rad/s)

P
o
w

e
r

Noncompressive 

estimate

Welch estimate

(coarse resolution)

(a) q=25, L=64,N=4096

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized frequency (rad/s)

P
ow

er

(b) q=50, L=128, N=2048

Figure 9: Estimating spectra with holes. The plots show two different noncompressive estimates

(differring resolutions) of a MA spectrum with two spectral notches (holes).

and hence noncompressive estimators may provide a way to monitor large bandwidths at low

sampling rates.

5 Conclusion

In this paper, we derived and analyzed a consistent, MC based PSD estimator that produces

both compressive and noncompressive estimates at sub-Nyquist sampling rates. The estimator

does not estimate the power spectrum on a discrete grid of frequencies but instead computes

average power within a given set of subbands. Compressive estimates leverage the sparsity of the

spectrum and exhibit better tradeoffs among the estimator’s resolution, complexity, and average

sampling rate compared to noncompressive estimates. Given suitable sampling patterns, both

compressive and noncompressive estimates can be recovered using NNLS, thus avoiding the

overhead of computing the estimates in different ways. The estimator is consistent and has

wide applicability; it is especially attractive in wideband applications where high sampling

rates are costly or difficult to implement.

6 Appendix

To show that v̂NC is asymptotically efficient, we show that it is a maximum likelihood estimator

(MLE) because MLEs are known to be asymptotically efficient [43, p. 472].

Define z(n) to be the nth snapshot of samples across all the channels of a MC sampler:

z(n) , [z1(n), z2(n), . . . , zq(n)]
T . (45)

The entries of z(n) are the nonuniform samples collected within one period (L/W seconds) of

the MC sampling sequence. The upper triangular portion of the sample correlation matrix S
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are the elements of û:

S ,
1

N

N−1∑

n=0

z(n)z(n)T (46)

=




r̂Nz1z1(0) r̂Nz1z2(0) . . . r̂Nz1zq(0)

r̂Nz2z1(0) r̂Nz2z2(0) . . .
...

...
. . .

r̂Nzqz1(0) . . . . . . . . . . r̂Nzqzq(0)



. (47)

Suppose x(t) is zero-mean WSS Gaussian random process. Then each snapshot z(n) is an

i.i.d. realization of a jointly Gaussian random vector with correlation matrix R. Taking R to

be the parameter of interest, the log-likelihood function given the data {z(n)}N−1
n=0 is [44, 45]

L
(
R; {z(n)}

)
=
−qN
2

ln 2π − N

2
ln det (R)− N

2
tr
[
R−1S

]
. (48)

The maximum likelihood estimate of R can be found by taking the gradient of L
(
R; {z(n)}

)

with respect to R and setting the result equal to zero.

∂L
(
R; {z(n)}

)

∂R
= −N

2
(R−1)T +

N

2
(R−1SR−1)T = 0 (49)

Solving for R reveals that the maximum likelihood estimate of R equals the sample correlation

S, or in other words, the entries in û are maximum likelihood estimates of rzazb(0) for all

combinations of pairs (a, b).

Now since v̂NC = Ψ†û, we have by the invariance property of maximum likelihood estima-

tors [43,45] that v̂NC is a maximum likelihood estimate of v. We therefore conclude that v̂NC

is asymptotically efficient when x(t) is a zero-mean WSS Gaussian random process.
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