3,203 research outputs found

    Per-alkoxy-pillar[5]arenes as electron donors: Electrochemical properties of dimethoxy-pillar[5]arene and its corresponding rotaxane

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 1,4-dimethoxypillar[5]arene undergoes reversible multielectron oxidations forming stable radical cations, a property retained when incorporated in [2]rotaxanes, suggesting that pillar[5]arenes can be employed as viable, yet unreported, electron donors

    Enforcement is central to the evolution of cooperation.

    Get PDF
    Cooperation occurs at all levels of life, from genomes, complex cells and multicellular organisms to societies and mutualisms between species. A major question for evolutionary biology is what these diverse systems have in common. Here, we review the full breadth of cooperative systems and find that they frequently rely on enforcement mechanisms that suppress selfish behaviour. We discuss many examples, including the suppression of transposable elements, uniparental inheritance of mitochondria and plastids, anti-cancer mechanisms, reciprocation and punishment in humans and other vertebrates, policing in eusocial insects and partner choice in mutualisms between species. To address a lack of accompanying theory, we develop a series of evolutionary models that show that the enforcement of cooperation is widely predicted. We argue that enforcement is an underappreciated, and often critical, ingredient for cooperation across all scales of biological organization

    A Search for Environmental Effects on Type Ia Supernovae

    Get PDF
    We use integrated colors and B and V absolute magnitudes of Type Ia supernova (SN) host galaxies in order to search for environmental effects on the SN optical properties. With the new sample of 44 SNe we confirm the conclusion by Hamuy et al. (1996a) that bright events occur preferentially in young stellar environments. We find also that the brightest SNe occur in the least luminous galaxies, a possible indication that metal-poorer neighbourhoods produce the more luminous events. The interpretation of these results is made difficult, however, due to the fact that galaxies with younger stellar populations are also lower in luminosity. In an attempt to remove this ambiguity we use models for the line strengths in the absorption spectrum of five early-type galaxies, in order to estimate metallicities and ages of the SN host galaxies. With the addition of abundance estimates from nebular analysis of the emission spectra of three spiral galaxies, we find possible further evidence that luminous SNe are produced in metal-poor neighborhoods. Further spectroscopic observations of the SN host galaxies will be necessary to test these results and assist in disentangling the age/metallicity effects on Type Ia SNe.Comment: 14 pages, 5 figures, to appear in the September 2000 issue of The Astronomical Journa

    Comparison of Frictional Heating Models

    Get PDF
    The purpose of this work was to compare the predicted temperature rises using four well-known models for frictional heating under a few selected conditions in which similar variable inputs are provided to each model. Classic papers by Archard, Kuhlmann-Wilsdorf, Lim and Ashby, and Rabinowicz have been examined, and a spreadsheet (Excel ) was developed to facilitate the calculations. This report may be used in conjunction with that spreadsheet. It explains the background, assumptions, and rationale used for the calculations. Calculated flash temperatures for selected material combinations, under a range of applied loads and sliding speeds, are tabulated. The materials include AISI 52100 bearing steel, CDA 932 bronze, NBD 200 silicon nitride, Ti-6Al-4V alloy, and carbon-graphite material. Due to the assumptions made by the different models, and the direct way in which certain assumed quantities, like heat sink distances or asperity dimensions, enter into the calculations, frictional hearing results may differ significantly; however, they can be similar in certain cases in light of certain assumptions that are shared between the models

    Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development

    Get PDF
    Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001) and at age 4 years (r = 0.16, P = 0.02). In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02). This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04). We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fa

    Life Cycle Assessment of Community-Based Sewer Mining : Integrated Heat Recovery and Fit-For-Purpose Water Reuse

    Get PDF
    Municipal sewage contains significant embedded resources in the form of chemical and thermal energy. Recent developments in sustainable technology have pushed for the integration of resource recovery from household wastewater to achieve net zero energy consumption and carbon-neutral communities. Sewage heat recovery and fit-for-purpose water reuse are options to optimize the resource recovery potential of municipal wastewater. This study presents a comparative life cycle assessment (LCA) focused on global warming potential (GWP), eutrophication potential (EUP), and human health carcinogenic potential (HHCP) of an integrated sewage heat recovery and water reuse system for a hypothetical community of 30,000 people. Conventional space and water heating components generally demonstrated the highest GWP contribution between the different system components evaluated. Sewage-heat-recovery-based district heating offered better environmental performance overall. Lower impact contributions were demonstrated by scenarios with a membrane bioreactor (MBR) and chlorination prior to water reuse applications compared to scenarios that use more traditional water and wastewater treatment technologies and discharge. The LCA findings show that integrating MBR wastewater treatment and water reuse into a district heating schema could provide additional environmental savings at a community scale.Peer reviewe

    Donor-acceptor dyads and triads employing core-substituted naphthalene diimides:a synthetic and spectro (electrochemical) study

    Get PDF
    Donor-acceptor dyads and triads comprising core-substituted naphthalene diimide (NDI) chromophores and either phenothiazine or phenoxazine donors are described. Synthesis combined with electrochemical and spectroelectrochemical investigations facilitates characterisation of the various redox states of these molecules, confirming the ability to combine arrays of electron donating and accepting moieties into single species that retain the redox properties of these individual moieties
    corecore