28,412 research outputs found

    The Energy-Momentum Tensor in Fulling-Rindler Vacuum

    Full text link
    The energy density in Fulling-Rindler vacuum, which is known to be negative "everywhere" is shown to be positive and singular on the horizons in such a fashion as to guarantee the positivity of the total energy. The mechanism of compensation is displayed in detail.Comment: 9 pages, ULB-TH-15/9

    Organizing information on the next generation web - Design and implementation of a new bookmark structure

    Get PDF
    The next-generation Web will increase the need for a highly organized and ever evolving method to store references to Web objects. These requirements could be realized by the development of a new bookmark structure. This paper endeavors to identify the key requirements of such a bookmark, specifically in relation to Web documents, and sets out a suggested design through which these needs may be accomplished. A prototype developed offers such features as the sharing of bookmarks between users and groups of users. Bookmarks for Web documents in this prototype allow more specific information to be stored such as: URL, the document type, the document title, keywords, a summary, user annotations, date added, date last visited and date last modified. Individuals may access the service from anywhere on the Internet, as long as they have a Java-enabled Web browser

    Uniformly Accelerated Mirrors. Part 1: Mean Fluxes

    Full text link
    The Davies-Fulling model describes the scattering of a massless field by a moving mirror in 1+1 dimensions. When the mirror travels under uniform acceleration, one encounters severe problems which are due to the infinite blue shift effects associated with the horizons. On one hand, the Bogoliubov coefficients are ill-defined and the total energy emitted diverges. On the other hand, the instantaneous mean flux vanishes. To obtained well-defined expressions we introduce an alternative model based on an action principle. The usefulness of this model is to allow to switch on and off the interaction at asymptotically large times. By an appropriate choice of the switching function, we obtain analytical expressions for the scattering amplitudes and the fluxes emitted by the mirror. When the coupling is constant, we recover the vanishing flux. However it is now followed by transients which inevitably become singular when the switching off is performed at late time. Our analysis reveals that the scattering amplitudes (and the Bogoliubov coefficients) should be seen as distributions and not as mere functions. Moreover, our regularized amplitudes can be put in a one to one correspondence with the transition amplitudes of an accelerated detector, thereby unifying the physics of uniformly accelerated systems. In a forthcoming article, we shall use our scattering amplitudes to analyze the quantum correlations amongst emitted particles which are also ill-defined in the Davies-Fulling model in the presence of horizons.Comment: 23 pages, 7 postscript figure

    Particles and energy fluxes from a CFT perspective

    Get PDF
    We analyze the creation of particles in two dimensions under the action of conformal transformations. We focus our attention on Mobius transformations and compare the usual approach, based on the Bogolubov coefficients, with an alternative but equivalent viewpoint based on correlation functions. In the latter approach the absence of particle production under full Mobius transformations is manifest. Moreover, we give examples, using the moving-mirror analogy, to illustrate the close relation between the production of quanta and energy.Comment: Revised version. To appear in Phys.Rev.

    Theory of valley-orbit coupling in a Si/SiGe quantum dot

    Full text link
    Electron states are studied for quantum dots in a strained Si quantum well, taking into account both valley and orbital physics. Realistic geometries are considered, including circular and elliptical dot shapes, parallel and perpendicular magnetic fields, and (most importantly for valley coupling) the small local tilt of the quantum well interface away from the crystallographic axes. In absence of a tilt, valley splitting occurs only between pairs of states with the same orbital quantum numbers. However, tilting is ubiquitous in conventional silicon heterostructures, leading to valley-orbit coupling. In this context, "valley splitting" is no longer a well defined concept, and the quantity of merit for qubit applications becomes the ground state gap. For typical dots used as qubits, a rich energy spectrum emerges, as a function of magnetic field, tilt angle, and orbital quantum number. Numerical and analytical solutions are obtained for the ground state gap and for the mixing fraction between the ground and excited states. This mixing can lead to valley scattering, decoherence, and leakage for Si spin qubits.Comment: 18 pages, including 4 figure

    Action of the gravitational field on the dynamical Casimir effect

    Full text link
    In this paper we analyze the action of the gravitational field on the dynamical Casimir effect. We consider a massless scalar field confined in a cuboid cavity placed in a gravitational field described by a static and diagonal metric. With one of the plane mirrors of the cavity allowed to move, we compute the average number of particles created inside the cavity by means of the Bogoliubov coefficients computed through perturbative expansions. We apply our result to the case of an oscillatory motion of the mirror, assuming a weak gravitational field described by the Schwarzschild metric. The regime of parametric amplification is analyzed in detail, demonstrating that our computed result for the mean number of particles created agrees with specific associated cases in the literature. Our results, obtained in the framework of the perturbation theory, are restricted, under resonant conditions, to a short-time limit.Comment: 2 Figures, comments are welcom

    From spinning to non-spinning cosmic string spacetimes

    Get PDF
    We analyse the properties of a fluid generating a spinning cosmic string spacetime with flat limiting cases corresponding to a constant angular momentum in the infinite past and static configuration in the infinite future. The spontaneous loss of angular momentum of a spinning cosmic string due to particle emission is discussed. The rate of particle production between the spinning and non-spinning cosmic string spacetimes is calculated.Comment: 11 pages, 1 figure, LaTeX To appear in Class. Quantum Gra

    Hawking Radiation of a Quantum Black Hole in an Inflationary Universe

    Full text link
    The quantum stress-energy tensor of a massless scalar field propagating in the two-dimensional Vaidya-de Sitter metric, which describes a classical model spacetime for a dynamical evaporating black hole in an inflationary universe, is analyzed. We present a possible way to obtain the Hawking radiation terms for the model with arbitrary functions of mass. It is used to see how the expansion of universe will affect the dynamical process of black hole evaporation. The results show that the cosmological inflation has an inclination to depress the black hole evaporation. However, if the cosmological constant is sufficiently large then the back-reaction effect has the inclination to increase the black hole evaporation. We also present a simple method to show that it will always produce a divergent flux of outgoing radiation along the Cauchy horizon where the curvature is a finite value. This means that the Hawking radiation will be very large in there and shall modify the classical spacetime drastically. Therefore the black hole evaporation cannot be discussed self-consistently on the classical Vaidya-type spacetime. Our method can also be applied to analyze the quantum stress-energy tensor in the more general Vaidya-type spacetimes.Comment: Proper boundary will lead to anti-evaporation of schwarzschild-de Sitter black holes, as corrected in Class. Quantum Grav. 11 (1994) 28

    Cooling of cryogenic electron bilayers via the Coulomb interaction

    Full text link
    Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby, cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure, and analyze the power transfer. We show that across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.Comment: 9 pages, 5 figure

    The Semi-Classical Back Reaction to Black Hole Evaporation

    Get PDF
    The semi-classical back reaction to black hole evaporation (wherein the renormalized energy momentum tensor is taken as source of Einstein's equations) is analyzed in detail. It is proven that the mass of a Schwarzshild black hole decreases according to Hawking's law dM/dt=C/M2dM/dt = - C/ M^2 where CC is a constant of order one and that the particles are emitted with a thermal spectrum at temperature 1/8πM(t)1/8\pi M(t).Comment: 10 pages, LATE
    corecore