3,064 research outputs found
Surface and capillary transitions in an associating binary mixture model
We investigate the phase diagram of a two-component associating fluid mixture
in the presence of selectively adsorbing substrates. The mixture is
characterized by a bulk phase diagram which displays peculiar features such as
closed loops of immiscibility. The presence of the substrates may interfere the
physical mechanism involved in the appearance of these phase diagrams, leading
to an enhanced tendency to phase separate below the lower critical solution
point. Three different cases are considered: a planar solid surface in contact
with a bulk fluid, while the other two represent two models of porous systems,
namely a slit and an array on infinitely long parallel cylinders. We confirm
that surface transitions, as well as capillary transitions for a large
area/volume ratio, are stabilized in the one-phase region. Applicability of our
results to experiments reported in the literature is discussed.Comment: 12 two-column pages, 12 figures, accepted for publication in Physical
Review E; corrected versio
Turing machines can be efficiently simulated by the General Purpose Analog Computer
The Church-Turing thesis states that any sufficiently powerful computational
model which captures the notion of algorithm is computationally equivalent to
the Turing machine. This equivalence usually holds both at a computability
level and at a computational complexity level modulo polynomial reductions.
However, the situation is less clear in what concerns models of computation
using real numbers, and no analog of the Church-Turing thesis exists for this
case. Recently it was shown that some models of computation with real numbers
were equivalent from a computability perspective. In particular it was shown
that Shannon's General Purpose Analog Computer (GPAC) is equivalent to
Computable Analysis. However, little is known about what happens at a
computational complexity level. In this paper we shed some light on the
connections between this two models, from a computational complexity level, by
showing that, modulo polynomial reductions, computations of Turing machines can
be simulated by GPACs, without the need of using more (space) resources than
those used in the original Turing computation, as long as we are talking about
bounded computations. In other words, computations done by the GPAC are as
space-efficient as computations done in the context of Computable Analysis
Derivation of some translation-invariant Lindblad equations for a quantum Brownian particle
We study the dynamics of a Brownian quantum particle hopping on an infinite
lattice with a spin degree of freedom. This particle is coupled to free boson
gases via a translation-invariant Hamiltonian which is linear in the creation
and annihilation operators of the bosons. We derive the time evolution of the
reduced density matrix of the particle in the van Hove limit in which we also
rescale the hopping rate. This corresponds to a situation in which both the
system-bath interactions and the hopping between neighboring sites are small
and they are effective on the same time scale. The reduced evolution is given
by a translation-invariant Lindblad master equation which is derived
explicitly.Comment: 28 pages, 4 figures, minor revisio
Vacuum effects in an asymptotically uniformly accelerated frame with a constant magnetic field
In the present article we solve the Dirac-Pauli and Klein Gordon equations in
an asymptotically uniformly accelerated frame when a constant magnetic field is
present. We compute, via the Bogoliubov coefficients, the density of scalar and
spin 1/2 particles created. We discuss the role played by the magnetic field
and the thermal character of the spectrum.Comment: 17 pages. RevTe
Electroweak Phase Transitions in left-right symmetric models
We study the finite-temperature effective potential of minimal left-right
symmetric models containing a bidoublet and two triplets in the scalar sector.
We perform a numerical analysis of the parameter space compatible with the
requirement that baryon asymmetry is not washed out by sphaleron processes
after the electroweak phase transition. We find that the spectrum of scalar
particles for these acceptable cases is consistent with present experimental
bounds.Comment: 20 pages, 5 figures (included), some comments added, typos corrected
and new references included. Final version to appear in PR
Geometrothermodynamics of five dimensional black holes in Einstein-Gauss-Bonnet-theory
We investigate the thermodynamic properties of 5D static and spherically
symmetric black holes in (i) Einstein-Maxwell-Gauss-Bonnet theory, (ii)
Einstein-Maxwell-Gauss-Bonnet theory with negative cosmological constant, and
in (iii) Einstein-Yang-Mills-Gauss-Bonnet theory. To formulate the
thermodynamics of these black holes we use the Bekenstein-Hawking entropy
relation and, alternatively, a modified entropy formula which follows from the
first law of thermodynamics of black holes. The results of both approaches are
not equivalent. Using the formalism of geometrothermodynamics, we introduce in
the manifold of equilibrium states a Legendre invariant metric for each black
hole and for each thermodynamic approach, and show that the thermodynamic
curvature diverges at those points where the temperature vanishes and the heat
capacity diverges.Comment: New sections added, references adde
Infrared exponents and the strong-coupling limit in lattice Landau gauge
We study the gluon and ghost propagators of lattice Landau gauge in the
strong-coupling limit beta=0 in pure SU(2) lattice gauge theory to find
evidence of the conformal infrared behavior of these propagators as predicted
by a variety of functional continuum methods for asymptotically small momenta
. In the strong-coupling limit, this same
behavior is obtained for the larger values of a^2q^2 (in units of the lattice
spacing a), where it is otherwise swamped by the gauge field dynamics.
Deviations for a^2q^2 < 1 are well parameterized by a transverse gluon mass
. Perhaps unexpectedly, these deviations are thus no finite-volume
effect but persist in the infinite-volume limit. They furthermore depend on the
definition of gauge fields on the lattice, while the asymptotic conformal
behavior does not. We also comment on a misinterpretation of our results by
Cucchieri and Mendes in Phys. Rev. D81 (2010) 016005.Comment: 17 pages, 12 figures. Revised version (mainly sections I and II);
references and comments on subsequent work on the subject added
A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the and $\Upsilon
The shapes of the inclusive photon spectra in the processes \Jp \to \gamma
X and \Up \to \gamma X have been analysed using all available experimental
data.
Relativistic, higher order QCD and gluon mass corrections were taken into
account in the fitted functions. Only on including the gluon mass corrections,
were consistent and acceptable fits obtained. Values of
GeV and GeV were found for the
effective gluon masses (corresponding to Born level diagrams) for the \Jp and
\Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to
\gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine and . Values consistent with the current world
average were obtained only when gluon mass correction factors,
calculated using the fitted values of the effective gluon mass, were applied. A
gluon mass GeV, as suggested with these results, is consistent with
previous analytical theoretical calculations and independent phenomenological
estimates, as well as with a recent, more accurate, lattice calculation of the
gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table
The Infrared Behaviour of the Pure Yang-Mills Green Functions
We review the infrared properties of the pure Yang-Mills correlators and
discuss recent results concerning the two classes of low-momentum solutions for
them reported in literature; i.e. decoupling and scaling solutions. We will
mainly focuss on the Landau gauge and pay special attention to the results
inferred from the analysis of the Dyson-Schwinger equations of the theory and
from "{\it quenched}" lattice QCD. The results obtained from properly
interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs
- …