165 research outputs found

    Superantigens from Staphylococcus aureus induce procoagulant activity and monocyte tissue factor expression in whole blood and mononuclear cells via IL-1beta.

    Get PDF
    Background: Staphylococcus aureus is one of the most common bacteria in human sepsis, a condition in which the activation of blood coagulation plays a critical pathophysiological role. During severe sepsis and septic shock microthrombi and multiorgan dysfunction are observed as a result of bacterial interference with the host defense and coagulation systems. Objectives: In the present study, staphylococcal superantigens were tested for their ability to induce procoagulant activity and tissue factor (TF) expression in human whole blood and in peripheral blood mononuclear cells. Methods and results: Determination of clotting time showed that enterotoxin A, B and toxic shock syndrome toxin 1 from S. aureus induce procoagulant activity in whole blood and in mononuclear cells. The procoagulant activity was dependent on the expression of TF in monocytes since antibodies to TF inhibited the effect of the toxins and TF was detected on the surface of monocytes by flow cytometry. In the supernatants from staphylococcal toxin-stimulated mononuclear cells, interleukin (IL)-1beta was detected by ELISA. Furthermore, the increased procoagulant activity and TF expression in monocytes induced by the staphylococcal toxins were inhibited in the presence of IL-1 receptor antagonist, a natural inhibitor of IL-1beta. Conclusions: The present study shows that superantigens from S. aureus activate the extrinsic coagulation pathway by inducing expression of TF in monocytes, and that the expression is mainly triggered by superantigen-induced IL-1beta release

    Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    Get PDF
    Background: Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings: GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance: Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties

    Clinical practice: The bleeding child. Part II: Disorders of secondary hemostasis and fibrinolysis

    Get PDF
    Bleeding complications in children may be caused by disorders of secondary hemostasis or fibrinolysis. Characteristic features in medical history and physical examination, especially of hemophilia, are palpable deep hematomas, bleeding in joints and muscles, and recurrent bleedings. A detailed medical and family history combined with a thorough physical examination is essential to distinguish abnormal from normal bleeding and to decide whether it is necessary to perform diagnostic laboratory evaluation. Initial laboratory tests include prothrombin time and activated partial thromboplastin time. Knowledge of the classical coagulation cascade with its intrinsic, extrinsic, and common pathways, is useful to identify potential defects in the coagulation in order to decide which additional coagulation tests should be performed

    Proteolysis of Human Thrombin Generates Novel Host Defense Peptides

    Get PDF
    The coagulation system is characterized by the sequential and highly localized activation of a series of serine proteases, culminating in the conversion of fibrinogen into fibrin, and formation of a fibrin clot. Here we show that C-terminal peptides of thrombin, a key enzyme in the coagulation cascade, constitute a novel class of host defense peptides, released upon proteolysis of thrombin in vitro, and detected in human wounds in vivo. Under physiological conditions, these peptides exert antimicrobial effects against Gram-positive and Gram-negative bacteria, mediated by membrane lysis, as well as immunomodulatory functions, by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, they are protective against P. aeruginosa sepsis, as well as lipopolysaccharide-induced shock. Moreover, the thrombin-derived peptides exhibit helical structures upon binding to lipopolysaccharide and can also permeabilize liposomes, features typical of β€œclassical” helical antimicrobial peptides. These findings provide a novel link between the coagulation system and host-defense peptides, two fundamental biological systems activated in response to injury and microbial invasion

    Proteome-Wide Analysis of Single-Nucleotide Variations in the N-Glycosylation Sequon of Human Genes

    Get PDF
    N-linked glycosylation is one of the most frequent post-translational modifications of proteins with a profound impact on their biological function. Besides other functions, N-linked glycosylation assists in protein folding, determines protein orientation at the cell surface, or protects proteins from proteases. The N-linked glycans attach to asparagines in the sequence context Asn-X-Ser/Thr, where X is any amino acid except proline. Any variation (e.g. non-synonymous single nucleotide polymorphism or mutation) that abolishes the N-glycosylation sequence motif will lead to the loss of a glycosylation site. On the other hand, variations causing a substitution that creates a new N-glycosylation sequence motif can result in the gain of glycosylation. Although the general importance of glycosylation is well known and acknowledged, the effect of variation on the actual glycoproteome of an organism is still mostly unknown. In this study, we focus on a comprehensive analysis of non-synonymous single nucleotide variations (nsSNV) that lead to either loss or gain of the N-glycosylation motif. We find that 1091 proteins have modified N-glycosylation sequons due to nsSNVs in the genome. Based on analysis of proteins that have a solved 3D structure at the site of variation, we find that 48% of the variations that lead to changes in glycosylation sites occur at the loop and bend regions of the proteins. Pathway and function enrichment analysis show that a significant number of proteins that gained or lost the glycosylation motif are involved in kinase activity, immune response, and blood coagulation. A structure-function analysis of a blood coagulation protein, antithrombin III and a protease, cathepsin D, showcases how a comprehensive study followed by structural analysis can help better understand the functional impact of the nsSNVs

    Complexity in the genetic architecture of leukoaraiosis in hypertensive sibships from the GENOA Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Subcortical white matter hyperintensity on magnetic resonance imaging (MRI) of the brain, referred to as leukoaraiosis, is associated with increased risk of stroke and dementia. Hypertension may contribute to leukoaraiosis by accelerating the process of arteriosclerosis involving penetrating small arteries and arterioles in the brain. Leukoaraiosis volume is highly heritable but shows significant inter-individual variability that is not predicted well by any clinical covariates (except for age) or by single SNPs.</p> <p>Methods</p> <p>As part of the Genetics of Microangiopathic Brain Injury (GMBI) Study, 777 individuals (74% hypertensive) underwent brain MRI and were genotyped for 1649 SNPs from genes known or hypothesized to be involved in arteriosclerosis and related pathways. We examined SNP main effects, epistatic (gene-gene) interactions, and context-dependent (gene-environment) interactions between these SNPs and covariates (including conventional and novel risk factors for arteriosclerosis) for association with leukoaraiosis volume. Three methods were used to reduce the chance of false positive associations: 1) false discovery rate (FDR) adjustment for multiple testing, 2) an internal replication design, and 3) a ten-iteration four-fold cross-validation scheme.</p> <p>Results</p> <p>Four SNP main effects (in <it>F3</it>, <it>KITLG</it>, <it>CAPN10</it>, and <it>MMP2</it>), 12 SNP-covariate interactions (including interactions between <it>KITLG </it>and homocysteine, and between <it>TGFB3 </it>and both physical activity and C-reactive protein), and 173 SNP-SNP interactions were significant, replicated, and cross-validated. While a model containing the top single SNPs with main effects predicted only 3.72% of variation in leukoaraiosis in independent test samples, a multiple variable model that included the four most highly predictive SNP-SNP and SNP-covariate interactions predicted 11.83%.</p> <p>Conclusion</p> <p>These results indicate that the genetic architecture of leukoaraiosis is complex, yet predictive, when the contributions of SNP main effects are considered in combination with effects of SNP interactions with other genes and covariates.</p

    Renal clearable catalytic gold nanoclusters for in vivo disease monitoring

    Get PDF
    Ultra-small gold nanoclusters (AuNCs) have emerged as agile probes for in vivo imaging, as they exhibit exceptional tumour accumulation and efficient renal clearance properties. However, their intrinsic catalytic activity, which can enable increased detection sensitivity, has yet to be explored for in vivo sensing. By exploiting the peroxidase-mimicking activity of AuNCs and the precise nanometer size filtration of the kidney, we designed multifunctional protease nanosensors that respond to disease microenvironments to produce a direct colorimetric urinary readout of disease state in less than 1 h. We monitored the catalytic activity of AuNCs in collected urine of a mouse model of colorectal cancer where tumour-bearing mice showed a 13-fold increase in colorimetric signal compared to healthy mice. Nanosensors were eliminated completely through hepatic and renal excretion within 4 weeks after injection with no evidence of toxicity. We envision that this modular approach will enable rapid detection of a diverse range of diseases by exploiting their specific enzymatic signatures

    Anti-Human Tissue Factor Antibody Ameliorated Intestinal Ischemia Reperfusion-Induced Acute Lung Injury in Human Tissue Factor Knock-In Mice

    Get PDF
    BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies

    The Extended Cleavage Specificity of Human Thrombin

    Get PDF
    Thrombin is one of the most extensively studied of all proteases. Its central role in the coagulation cascade as well as several other areas has been thoroughly documented. Despite this, its consensus cleavage site has never been determined in detail. Here we have determined its extended substrate recognition profile using phage-display technology. The consensus recognition sequence was identified as, P2-Pro, P1-Arg, P1β€²-Ser/Ala/Gly/Thr, P2β€²-not acidic and P3β€²-Arg. Our analysis also identifies an important role for a P3β€²-arginine in thrombin substrates lacking a P2-proline. In order to study kinetics of this cooperative or additive effect we developed a system for insertion of various pre-selected cleavable sequences in a linker region between two thioredoxin molecules. Using this system we show that mutations of P2-Pro and P3β€²-Arg lead to an approximate 20-fold and 14-fold reduction, respectively in the rate of cleavage. Mutating both Pro and Arg results in a drop in cleavage of 200–400 times, which highlights the importance of these two positions for maximal substrate cleavage. Interestingly, no natural substrates display the obtained consensus sequence but represent sequences that show only 1–30% of the optimal cleavage rate for thrombin. This clearly indicates that maximal cleavage, excluding the help of exosite interactions, is not always desired, which may instead cause problems with dysregulated coagulation. It is likely exosite cooperativity has a central role in determining the specificity and rate of cleavage of many of these in vivo substrates. Major effects on cleavage efficiency were also observed for residues as far away as 4 amino acids from the cleavage site. Insertion of an aspartic acid in position P4 resulted in a drop in cleavage by a factor of almost 20 times

    A Network-Based Multi-Target Computational Estimation Scheme for Anticoagulant Activities of Compounds

    Get PDF
    BACKGROUND: Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. METHODOLOGY: We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (rβ€Š=β€Š0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. CONCLUSIONS: This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking
    • …
    corecore