201 research outputs found

    Therapeutic strategies utilising SDF-1α in ischaemic cardiomyopathy

    Get PDF
    Heart failure is rapidly increasing in prevalence and will redraw the global landscape for cardiovascular health. Alleviating and repairing cardiac injury associated with myocardial infarction (MI) is key to improving this burden. Homing signals mobilise and recruit stem cells to the ischaemic myocardium where they exert beneficial paracrine effects. The chemoattractant cytokine SDF-1α and its associated receptor CXCR4 are upregulated after MI and appear to be important in this context. Activation of CXCR4 promotes both cardiomyocyte survival and stem cell migration towards the infarcted myocardium. These effects have beneficial effects on infarct size, and left ventricular remodelling and function. However, the timing of endogenous SDF-1α release and CXCR4 upregulation may not be optimal. Furthermore, current ELISA-based assays cannot distinguish between active SDF-1α, and SDF-1α inactivated by dipeptidyl peptidase 4 (DPP4). Current therapeutic approaches aim to recruit the SDF-1α-CXCR4 pathway or prolong SDF-1α life-time by preventing its cleavage by DPP4. This review assesses the evidence supporting these approaches and proposes SDF-1α as an important confounder in recent studies of DPP4 inhibitors

    An evaluation of the bacteriostatic effect of platelet-rich plasma

    Get PDF
    Chronic wounds are a considerable health burden with high morbidity and poor rates of healing. Colonisation of chronic wounds by bacteria can be a significant factor in their poor healing rate. These bacteria can develop antibiotic resistance over time and can lead to wound infections, systemic illness, and occasionally amputation. When a large number of micro‐organisms colonise wounds, they can lead to biofilm formation, which are self‐perpetuating colonies of bacteria closed within an extracellular matrix, which are poorly penetrated by antibiotics. Platelet‐rich plasma (PRP) is an autologous blood product rich in growth factors and cytokines that are involved in an inflammatory response. PRP can be injected or applied to a wound as a topical gel, and there is some interest regarding its antimicrobial properties and whether this can improve wound healing. This study aimed to evaluate the in vitro bacteriostatic effect of PRP. PRP was collected from healthy volunteers and processed into two preparations: activated PRP—activated with calcium chloride and ethanol; inactivated PRP. The activity of each preparation against Staphylococcus aureus and Staphylococcus epidermis was evaluated against a control by three experiments: bacterial kill assay to assess planktonic bacterial growth; plate colony assay to assess bacterial colony growth; and colony biofilm assay to assess biofilm growth. Compared with control, both preparations of PRP significantly inhibited growth of planktonic S aureus and S epidermis. Activated PRP reduced planktonic bacterial concentration more than inactivated PRP in both bacteria. Both PRP preparations significantly reduced bacterial colony counts for both bacteria when compared with control; however, there was no difference between the two. There was no difference found between biofilm growth in either PRP against control or against the other preparation. This study demonstrates that PRP does have an inhibitory effect on the growth of common wound pathogens. Activation may be an important factor in increasing the antimicrobial effect of PRP. However, we did not find evidence of an effect against more complex bacterial colonies

    Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis

    Get PDF
    AIMS: The potential of remote ischaemic conditioning (RIC) to ameliorate myocardial ischaemia-reperfusion injury (IRI) remains controversial. We aimed to analyse the pre-clinical evidence base to ascertain the overall effect and variability of RIC in animal in vivo models of myocardial IRI. Furthermore, we aimed to investigate the impact of different study protocols on the protective utility of RIC in animal models and identify gaps in our understanding of this promising therapeutic strategy. METHODS AND RESULTS: Our primary outcome measure was the difference in mean infarct size between RIC and control groups in in vivo models of myocardial IRI. A systematic review returned 31 reports, from which we made 22 controlled comparisons of remote ischaemic preconditioning (RIPreC) and 21 of remote ischaemic perconditioning and postconditioning (RIPerC/RIPostC) in a pooled random-effects meta-analysis. In total, our analysis includes data from 280 control animals and 373 animals subject to RIC. Overall, RIPreC reduced infarct size as a percentage of area at risk by 22.8% (95% CI 18.8-26.9%), when compared with untreated controls (P < 0.001). Similarly, RIPerC/RIPostC reduced infarct size by 22.2% (95% CI 17.1-25.3%; P < 0.001). Interestingly, we observed significant heterogeneity in effect size (T2 = 92.9% and I2 = 99.4%; P < 0.001) that could not be explained by any of the experimental variables analysed by meta-regression. However, few reports have systematically characterized RIC protocols, and few of the included in vivo studies satisfactorily met study quality requirements, particularly with respect to blinding and randomization. CONCLUSIONS: RIC significantly reduces infarct size in in vivo models of myocardial IRI. Heterogeneity between studies could not be explained by the experimental variables tested, but studies are limited in number and lack consistency in quality and study design. There is therefore a clear need for more well-performed in vivo studies with particular emphasis on detailed characterization of RIC protocols and investigating the potential impact of gender. Finally, more studies investigating the potential benefit of RIC in larger species are required before translation to humans

    Stromal cell-derived factor-1α signals via the endothelium to protect the heart against ischaemia-reperfusion injury

    Get PDF
    AIMS: The chemokine stromal derived factor-1α (SDF-1α) is known to protect the heart acutely from ischaemia-reperfusion injury via its cognate receptor, CXCR4. However, the timing and cellular location of this effect, remains controversial. METHODS AND RESULTS: Wild type male and female mice were subjected to 40 min LAD territory ischaemia in vivo and injected with either saline (control) or SDF-1α prior to 2 h reperfusion. Infarct size as a proportion of area at risk was assessed histologically using Evans blue and triphenyltetrazolium chloride. Our results confirm the cardioprotective effect of exogenous SDF-1α in mouse ischaemia-reperfusion injury and, for the first time, show protection when SDF-1α is delivered just prior to reperfusion, which has important therapeutic implications. The role of cell type was examined using the same in vivo ischaemia-reperfusion protocol in cardiomyocyte- and endothelial-specific CXCR4-null mice, and by Western blot analysis of endothelial cells treated in vitro. These experiments demonstrated that the acute infarct-sparing effect is mediated by endothelial cells, possibly via the signalling kinases Erk1/2 and PI3K/Akt. Unexpectedly, cardiomyocyte-specific deletion of CXCR4 was found to be cardioprotective per se. RNAseq analysis indicated altered expression of the mitochondrial protein co-enzyme Q10b in these mice. CONCLUSIONS: Administration of SDF-1α is cardioprotective when administered prior to reperfusion and may, therefore, have clinical utility. SDF-1α-CXCR4-mediated cardioprotection from ischaemia-reperfusion injury is contingent on the cellular location of CXCR4 activation. Specifically, cardioprotection is mediated by endothelial signalling, while cardiomyocyte-specific deletion of CXCR4 has an infarct-sparing effect per se

    Positive Interactions between Desert Granivores: Localized Facilitation of Harvester Ants by Kangaroo Rats

    Get PDF
    Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis) mounds and rough harvester ant (Pogonomyrmex rugosus) colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (<10 m). Mortality risk of vulnerable, recently founded harvester ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species

    Incidence rates of progressive childhood encephalopathy in Oslo, Norway: a population based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Progressive encephalopathy (PE) in children is a heterogeneous group of diseases mainly composed of metabolic diseases, but it consists also of neurodegenerative disorders where neither metabolic nor other causes are found. We wanted to estimate the incidence rate and aetiology of PE, as well as the age of onset of the disease.</p> <p>Methods</p> <p>We included PE cases born between 1985 and 2003, living in Oslo, and registered the number presenting annually between 1985 and 2004. Person-years at risk between 0 and 15 years were based on the number of live births during the observation period which was divided into four 5-year intervals. We calculated incidence rates according to age at onset which was classified as neonatal (0–4 weeks), infantile (1–12 months), late infantile (1–5 years), and juvenile (6–12 years).</p> <p>Results</p> <p>We found 84 PE cases representing 28 diagnoses among 1,305,997 person years, giving an incidence rate of 6.43 per 100,000 person years. The age-specific incidence rates per 100,000 were: 79.89 (<1 year), 8.64 (1–2 years), 1.90 (2–5 years), and 0.65 (>5 years). 66% (55/84) of the cases were metabolic, 32% (27/54) were neurodegenerative, and 2% (2/84) had HIV encephalopathy. 71% (60/84) of the cases presented at < 1 year, 24% (20/84) were late infantile presentations, and 5% (4/84) were juvenile presentations. Neonatal onset was more common in the metabolic (46%) (25/55) compared to the neurodegenerative group (7%) (2/27). 20% (17/84) of all cases were classified as unspecified neurodegenerative disease.</p> <p>Conclusion</p> <p>The overall incidence rate of PE was 6.43 per 100,000 person years. There was a strong reduction in incidence rates with increasing age. Two-thirds of the cases were metabolic, of which almost half presented in the neonatal period.</p

    Early assembly of the most massive galaxies

    Get PDF
    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 Gyrs after the Big Bang, having grown to more than 90% of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22% of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.Comment: Published in Nature 2nd April 2009. This astro ph version includes main text and supplementary material combine

    Do Herbivores Eavesdrop on Ant Chemical Communication to Avoid Predation?

    Get PDF
    Strong effects of predator chemical cues on prey are common in aquatic and marine ecosystems, but are thought to be rare in terrestrial systems and specifically for arthropods. For ants, herbivores are hypothesized to eavesdrop on ant chemical communication and thereby avoid predation or confrontation. Here I tested the effect of ant chemical cues on herbivore choice and herbivory. Using Margaridisa sp. flea beetles and leaves from the host tree (Conostegia xalapensis), I performed paired-leaf choice feeding experiments. Coating leaves with crushed ant liquids (Azteca instabilis), exposing leaves to ant patrolling prior to choice tests (A. instabilis and Camponotus textor) and comparing leaves from trees with and without A. instabilis nests resulted in more herbivores and herbivory on control (no ant-treatment) relative to ant-treatment leaves. In contrast to A. instabilis and C. textor, leaves previously patrolled by Solenopsis geminata had no difference in beetle number and damage compared to control leaves. Altering the time A. instabilis patrolled treatment leaves prior to choice tests (0-, 5-, 30-, 90-, 180-min.) revealed treatment effects were only statistically significant after 90- and 180-min. of prior leaf exposure. This study suggests, for two ecologically important and taxonomically diverse genera (Azteca and Camponotus), ant chemical cues have important effects on herbivores and that these effects may be widespread across the ant family. It suggests that the effect of chemical cues on herbivores may only appear after substantial previous ant activity has occurred on plant tissues. Furthermore, it supports the hypothesis that herbivores use ant chemical communication to avoid predation or confrontation with ants

    Expression and Distribution of Ectonucleotidases in Mouse Urinary Bladder

    Get PDF
    Background: Normal urinary bladder function requires bidirectional molecular communication between urothelium, detrusor smooth muscle and sensory neurons and one of the key mediators involved in this intercellular signaling is ATP. Ectonucleotidases dephosphorylate nucleotides and thus regulate ligand exposure to P2X and P2Y purinergic receptors. Little is known about the role of these enzymes in mammalian bladder despite substantial literature linking bladder diseases to aberrant purinergic signaling. We therefore examined the expression and distribution of ectonucleotidases in the mouse bladder since mice offer the advantage of straightforward genetic modification for future studies. Principal Findings: RT-PCR demonstrated that eight members of the ectonucleoside triphosphate diphosphohydrolase (NTPD) family, as well as 5'-nucleotidase (NT5E) are expressed in mouse bladder. NTPD1, NTPD2, NTPD3, NTPD8 and NT5E all catalyze extracellular nucleotide dephosphorylation and in concert achieve stepwise conversion of extracellular ATP to adenosine. Immunofluorescent localization with confocal microscopy revealed NTPD1 in endothelium of blood vessels in the lamina propria and in detrusor smooth muscle cells, while NTPD2 was expressed in cells localized to a region of the lamina propria adjacent to detrusor and surrounding muscle bundles in the detrusor. NTPD3 was urothelial-specific, occurring on membranes of intermediate and basal epithelial cells but did not appear to be present in umbrella cells. Immunoblotting confirmed NTPD8 protein in bladder and immunofluorescence suggested a primary localization to the urothelium. NT5E was present exclusively in detrusor smooth muscle in a pattern complementary with that of NTPD1 suggesting a mechanism for providing adenosine to P1 receptors on the surface of myocytes. Conclusions: Ectonucleotidases exhibit highly cell-specific expression patterns in bladder and therefore likely act in a coordinated manner to regulate ligand availability to purinergic receptors. This is the first study to determine the expression and location of ectonucleotidases within the mammalian urinary bladder
    corecore