481 research outputs found

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    Multi-agent systems for power engineering applications - part 2 : Technologies, standards and tools for building multi-agent systems

    Get PDF
    This is the second part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examined the potential value of MAS technology to the power industry, described fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications, and presented a comprehensive review of the power engineering applications for which MAS are being investigated. It also defined the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented. Given the significant and growing interest in this field, it is imperative that the power engineering community considers the standards, tools, supporting technologies and design methodologies available to those wishing to implement a MAS solution for a power engineering problem. The paper describes the various options available and makes recommendations on best practice. It also describes the problem of interoperability between different multi-agent systems and proposes how this may be tackled

    The LSST Data Mining Research Agenda

    Full text link
    We describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night); multi-resolution methods for exploration of petascale databases; indexing of multi-attribute multi-dimensional astronomical databases (beyond spatial indexing) for rapid querying of petabyte databases; and more.Comment: 5 pages, Presented at the "Classification and Discovery in Large Astronomical Surveys" meeting, Ringberg Castle, 14-17 October, 200

    An inelastic neutron scattering investigation of the temporal behaviour of the hydrocarbonaceous overlayer of a prototype Fischer-Tropsch to olefins catalyst

    Get PDF
    Sasol Ltd., the University of Glasgow and the EPSRC [award reference EP/P505534/1] are thanked for the provision of a postgraduate studentship (ALD). The Royal Society is thanked for the provision of an Industry Fellowship (PBW).A dual sodium and sulfur promoted haematite, representative of a candidate Fischer-Tropsch to olefins (FTO) catalyst, is prepared and contrasted with the performance of an unpromoted hematite sample in the ambient pressure CO hydrogenation reaction at 623 K as a function of time-on-stream (0–24 h). In-situ post-reaction temperature-programmed oxidation measurements show the carbon evolutionary phase of the catalyst conditioning process to be retarded for the FTO catalyst. Ex-situ inelastic neutron scattering measurements show the promoters perturb the formation of a previously described hydrocarbonaceous overlayer. Specifically, whilst the sp3 hybridised C–H modes of the hydrocarbonaceous overlayer are almost unaffected by the additives, the formation of the overlayer’s sp2 hybridised C–H modes are noticeably impeded. The results are discussed in terms of the Na/S promoters disturbing the formation of an ordered hydrocarbonaceous overlayer that is thought to constrain the supply of adsorbed hydrogen atoms, which favours the formation of unsaturated hydrocarbons associated with the FTO process.Publisher PDFPeer reviewe

    Gauged Dimension Bubbles

    Full text link
    Some of the peculiar electrodynamical effects associated with gauged ``dimension bubbles'' are presented. Such bubbles, which effectively enclose a region of 5d spacetime, can arise from a 5d theory with a compact extra dimension. Bubbles with thin domain walls can be stabilized against total collapse by the entrapment of light charged scalar bosons inside the bubble, extending the idea of a neutral dimension bubble to accommodate the case of a gauged U(1) symmetry. Using a dielectric approach to the 4d dilaton-Maxwell theory, it is seen that the bubble wall is almost totally opaque to photons, leading to a new stabilization mechanism due to trapped photons. Photon dominated bubbles very slowly shrink, resulting in a temperature increase inside the bubble. At some critical temperature, however, these bubbles explode, with a release of radiation.Comment: 14 pages, no figures; to appear in Phys.Rev.

    Exchange Interaction in Binuclear Complexes with Rare Earth and Copper Ions: A Many-Body Model Study

    Full text link
    We have used a many-body model Hamiltonian to study the nature of the magnetic ground state of hetero-binuclear complexes involving rare-earth and copper ions. We have taken into account all diagonal repulsions involving the rare-earth 4f and 5d orbitals and the copper 3d orbital. Besides, we have included direct exchange interaction, crystal field splitting of the rare-earth atomic levels and spin-orbit interaction in the 4f orbitals. We have identified the inter-orbital 4f4f repulsion, Uff_{ff} and crystal field parameter, Δf\Delta_f as the key parameters involved in controlling the type of exchange interaction between the rare earth 4f4f and copper 3d spins. We have explored the nature of the ground state in the parameter space of Uff_{ff}, Δf\Delta_f, spin-orbit interaction strength λ\lambda and the 4f4f filling nf_f. We find that these systems show low-spin or high-spin ground state depending on the filling of the 4f4f levels of the rare-earth ion and ground state spin is critically dependent on Uff_{ff} and Δf\Delta_f. In case of half-filling (Gd(III)) we find a reentrant low-spin state as Uff_{ff} is increased, for small values of Δf\Delta_f, which explains the recently reported apparent anomalous anti-ferromagnetic behaviour of Gd(III)-radical complexes. By varying Uff_{ff} we also observe a switch over in the ground state spin for other fillings . We have introduced a spin-orbit coupling scheme which goes beyond L-S or j-j coupling scheme and we find that spin-orbit coupling does not significantly alter the basic picture.Comment: 22 pages, 11 ps figure

    To quantum mechanics through random fluctuations at the Planck time scale

    Full text link
    We show that (in contrast to a rather common opinion) QM is not a complete theory. This is a statistical approximation of classical statistical mechanics on the {\it infinite dimensional phase space.} Such an approximation is based on the asymptotic expansion of classical statistical averages with respect to a small parameter α.\alpha. Therefore statistical predictions of QM are only approximative and a better precision of measurements would induce deviations of experimental averages from quantum mechanical ones. In this note we present a natural physical interpretation of α\alpha as the time scaling parameter (between quantum and prequantum times). By considering the Planck time tPt_P as the unit of the prequantum time scale we couple our prequantum model with studies on the structure of space-time on the Planck scale performed in general relativity, string theory and cosmology. In our model the Planck time tPt_P is not at all the {\it "ultimate limit to our laws of physics"} (in the sense of laws of classical physics). We study random (Gaussian) infinite-dimensional fluctuations for prequantum times stPs\leq t_P and show that quantum mechanical averages can be considered as an approximative description of such fluctuations.Comment: Discussion on the possibility to go beyond Q

    Leptogenesis and rescattering in supersymmetric models

    Get PDF
    The observed baryon asymmetry of the Universe can be due to the BLB-L violating decay of heavy right handed (s)neutrinos. The amount of the asymmetry depends crucially on their number density. If the (s)neutrinos are generated thermally, in supersymmetric models there is limited parameter space leading to enough baryons. For this reason, several alternative mechanisms have been proposed. We discuss the nonperturbative production of sneutrino quanta by a direct coupling to the inflaton. This production dominates over the corresponding creation of neutrinos, and it can easily (i.e. even for a rather small inflaton-sneutrino coupling) lead to a sufficient baryon asymmetry. We then study the amplification of MSSM degrees of freedom, via their coupling to the sneutrinos, during the rescattering phase which follows the nonperturbative production. This process, which mainly influences the (MSSM) DD-flat directions, is very efficient as long as the sneutrinos quanta are in the relativistic regime. The rapid amplification of the light degrees of freedom may potentially lead to a gravitino problem. We estimate the gravitino production by means of a perturbative calculation, discussing the regime in which we expect it to be reliable.Comment: (20 pages, 6 figures), references added, typos corrected. Final version in revte

    Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow

    Full text link
    By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.Comment: accepted by AS

    Leptogenesis from a sneutrino condensate revisited

    Full text link
    We re--examine leptogenesis from a right--handed sneutrino condensate, paying special attention to the BB-term associated with the see--saw Majorana mass. This term generates a lepton asymmetry in the condensate whose time average vanishes. However, a net asymmetry will result if the sneutrino lifetime is not much longer than the period of oscillations. Supersymmetry breaking by thermal effects then yields a lepton asymmetry in the standard model sector after the condensate decays. We explore different possibilities by taking account of both the low--energy and Hubble BB-terms. It will be shown that the desired baryon asymmetry of the Universe can be obtained for a wide range of Majorana mass.Comment: 17 revtex pages, 3 figures, 1 table. Slightly modified and references added. Final version accepted for publication in Phys. Rev.
    corecore