149 research outputs found

    An enhanced CRISPR repressor for targeted mammalian gene regulation.

    Get PDF
    The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional repressor, but inefficiencies in target-gene silencing have limited its utility. Here we describe an improved Cas9 repressor based on the C-terminal fusion of a rationally designed bipartite repressor domain, KRAB-MeCP2, to nuclease-dead Cas9. We demonstrate the system's superiority in silencing coding and noncoding genes, simultaneously repressing a series of target genes, improving the results of single and dual guide RNA library screens, and enabling new architectures of synthetic genetic circuits

    Wild birds of the Italian Middle Ages: diet, environment and society

    Get PDF
    Wild birds are intrinsically associated with our perception of the Middle Ages. They often feature in heraldic designs, paintings, and books of hours; few human activities typify the medieval period better than falconry. Prominent in medieval iconography, wild birds feature less frequently in written sources (as they were rarely the subject of trade transactions or legal documents) but they can be abundant in archaeological sites. In this paper we highlight the nature of wild bird exploitation in Italian medieval societies, ranging from their role as food items to their status and symbolic importance. A survey of 13 Italian medieval sites corresponding to 19 ‘period sites’, dated from the fifth to the fifteenth centuries, reveals the occurrence of more than 100 species (certainly an under-estimate of the actual number). Anseriformes and Columbiformes played a prominent role in the mid- and late medieval Italian diet, though Passeriformes and wild Galliformes were also important. In the late Middle Ages, there is an increase in species diversity and in the role of hunting as an important marker of social status

    Cas9 gRNA engineering for genome editing, activation and repression

    Get PDF
    We demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.National Human Genome Research Institute (U.S.) (P50 HG005550)United States. Department of Energy (DE-FG02-02ER63445)Wyss Institute for Biologically Inspired EngineeringUnited States. Army Research Office (DARPA W911NF-11-2-0054)National Science Foundation (U.S.)United States. National Institutes of Health (5R01CA155320-04)United States. National Institutes of Health (P50 GM098792)National Cancer Institute (U.S.) (5T32CA009216-34)Massachusetts Institute of Technology. Department of Biological EngineeringHarvard Medical School. Department of GeneticsDefense Threat Reduction Agency (DTRA) (HDTRA1-14-1-0006

    Highly-efficient Cas9-mediated transcriptional programming

    Get PDF
    The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. We describe an improved transcriptional regulator obtained through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. We demonstrate its utility in activating endogenous coding and noncoding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).National Human Genome Research Institute (U.S.) (Grant P50 HG005550)United States. Dept. of Energy (Grant DE-FG02-02ER63445)Wyss Institute for Biologically Inspired EngineeringNational Science Foundation (U.S.). Graduate Research FellowshipMassachusetts Institute of Technology. Department of Biological EngineeringHarvard Medical School. Department of Genetic

    Be, a New "Private" Blood Factor

    No full text
    • 

    corecore