426 research outputs found

    Optical pulsations in HZ Herculis. 5. Pulse-resolved spectrophotometry

    Get PDF
    Digital spectra of HZ Herculis were obtained with 10 A resolution in the 3,600 - 6,000 A region, synchronously dividing the 1.24-s optical pulsation period into eight 155-ms phase bins. The optical pulses are detected in the data, but their fractional amplitude is only 0.08 percent, a factor of 4 less than typically observed. The separate spectra of each one-eighth of the pulse are identical to within the statistics of the observation. If the X-ray to optical pulse reprocessing mechanism concentrates the optical pulsations into discrete spectral line features, data require the pulses to be distributed among more than four such lines

    Attractor and Basin Entropies of Random Boolean Networks Under Asynchronous Stochastic Update

    Full text link
    We introduce a numerical method to study random Boolean networks with asynchronous stochas- tic update. Each node in the network of states starts with equal occupation probability and this probability distribution then evolves to a steady state. Nodes left with finite occupation probability determine the attractors and the sizes of their basins. As for synchronous update, the basin entropy grows with system size only for critical networks, where the distribution of attractor lengths is a power law. We determine analytically the distribution for the number of attractors and basin sizes for frozen networks with connectivity K = 1.Comment: 5 pages, 3 figures, in submissio

    Random sampling vs. exact enumeration of attractors in random Boolean networks

    Full text link
    We clarify the effect different sampling methods and weighting schemes have on the statistics of attractors in ensembles of random Boolean networks (RBNs). We directly measure cycle lengths of attractors and sizes of basins of attraction in RBNs using exact enumeration of the state space. In general, the distribution of attractor lengths differs markedly from that obtained by randomly choosing an initial state and following the dynamics to reach an attractor. Our results indicate that the former distribution decays as a power-law with exponent 1 for all connectivities K>1K>1 in the infinite system size limit. In contrast, the latter distribution decays as a power law only for K=2. This is because the mean basin size grows linearly with the attractor cycle length for K>2K>2, and is statistically independent of the cycle length for K=2. We also find that the histograms of basin sizes are strongly peaked at integer multiples of powers of two for K<3K<3

    Rapid convergence of time-averaged frequency in phase synchronized systems

    Full text link
    Numerical and experimental evidence is presented to show that many phase synchronized systems of non-identical chaotic oscillators, where the chaotic state is reached through a period-doubling cascade, show rapid convergence of the time-averaged frequency. The speed of convergence toward the natural frequency scales as the inverse of the measurement period. The results also suggest an explanation for why such chaotic oscillators can be phase synchronized.Comment: 6 pages, 9 figure

    Evaluation of Specific Symptoms of Bacterial Vaginosis Among Pregnant Women

    Get PDF
    Objective: Identification of the symptoms of bacterial vaginosis (BV) in pregnancy might be rational in order to identify a possible BV-associated group at risk of preterm delivery

    Far-UV Observations of NGC 4151 during the ORFEUS-SPAS II Mission

    Get PDF
    We observed the Seyfert 1 galaxy NGC 4151 on eleven occasions at 1-2 day intervals using the Berkeley spectrometer during the ORFEUS-SPAS II mission in 1996 November. The mean spectrum covers 912-1220 A at ~0.3 A resolution with a total exposure of 15,658 seconds. The mean flux at 1000 A was 4.7e-13 erg/cm^2/s/A. We identify the neutral hydrogen absorption with a number of components that correspond to the velocity distribution of \ion{H}{1} seen in our own Galaxy as well as features identified in the CIV 1549 absorption profile by Weymann et al. The main component of neutral hydrogen in NGC 4151 has a total column density of log N_HI = 18.7 +/- 1.5 cm^{-2} for a Doppler parameter b=250 +/- 50 km/s, and it covers 84 +/- 6% of the source. This is consistent with previous results obtained with the Hopkins Ultraviolet Telescope. Other intrinsic far-UV absorption features are not resolved, but the CIII* 1176 absorption line has a significantly higher blueshift relative to NGC 4151 than the CIII 977 resonance line. This implies that the highest velocity region of the outflowing gas has the highest density. Variations in the equivalent width of the CIII* 1176 absorption line anticorrelate with continuum variations on timescales of days. For an ionization timescale <1 day, we set an upper limit of 25 pc on the distance of the absorbing gas from the central source. The OVI 1034 and HeII 1085 emission lines also vary on timescales of 1-2 days, but their response to the continuum variations is complex. For some continuum variations they show no response, while for others the response is instantaneous to the limit of our sampling interval.Comment: 4 pages, 2 PostScript figures, uses emulateapj.sty, apjfonts.sty. To appear in the Astrophysical Journal (Letters) special issue for ORFEU

    Extreme value statistics and return intervals in long-range correlated uniform deviates

    Full text link
    We study extremal statistics and return intervals in stationary long-range correlated sequences for which the underlying probability density function is bounded and uniform. The extremal statistics we consider e.g., maximum relative to minimum are such that the reference point from which the maximum is measured is itself a random quantity. We analytically calculate the limiting distributions for independent and identically distributed random variables, and use these as a reference point for correlated cases. The distributions are different from that of the maximum itself i.e., a Weibull distribution, reflecting the fact that the distribution of the reference point either dominates over or convolves with the distribution of the maximum. The functional form of the limiting distributions is unaffected by correlations, although the convergence is slower. We show that our findings can be directly generalized to a wide class of stochastic processes. We also analyze return interval distributions, and compare them to recent conjectures of their functional form
    corecore