20 research outputs found

    Analysis of polymorphisms at the adiponectin gene locus in association with type 2 diabetes, body mass index and cardiovascular traits in Latvian population

    Get PDF
    Funding Information: The work was supported by the National Research Programme in Medicine 2006–2009 project No. 14, “Creation of the unified and generally accessible data base on the main life expectancy and life quality threatening pathologies and epidemiology of their risk factors in Latvian population”, Latvian Council of Science Grant 01.0023.01. We acknowledge Genome Database of Latvian Population, Latvian Biomedical Research and Study Centre for providing data and DNA samples. Copyright: Copyright 2010 Elsevier B.V., All rights reserved.Despite the number of recently conducted studies seeking to determine the association between genetic variants of adiponectin gene and susceptibility to type 2 diabetes (T2D) and increased body mass index (BMI), the results obtained are often inconsistent. To determine the impact of common polymorphisms in promoter and coding regions of adiponectin gene on these conditions in Latvian population, we selected ten SNPs (rs2241767, rs1501299, rs3777261, rs16861210, rs2241766, rs822396, rs182052, rs17300539, rs16861194, rs266729) based on haploblock structure and previously reported association studies. The selected SNPs were screened in a study group of 835 participants from the Genome Data Base of Latvian Population and mainly consisted of patients with T2D and coronary heart disease. None of the individual polymorphisms were significantly associated with T2D status or BMI when analysed using logistic or linear regression and adjusted for gender, age and other significant covariates. Frequency of rs2241766 T allele homozygotes however was significantly increased in T2D patients compared to controls (uncorrected P = 0.007). When analysed with other traits, the rs182052 G allele was found to be less frequent in patients suffering from myocardial infarction (P = 0.02; OR = 0.76, CI95% [0.61-0.92]) compared to others. Haplotype analysis revealed significant association of one haplotype with atrial fibrillation (uncorrected P = 0.01). In summary, we conclude that SNPs in adiponectin gene are unlikely to represent the risk for T2D, but may be involved in pathogenesis of CHD in the Latvian population.publishersversionPeer reviewe

    Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals

    Get PDF
    Funding Information: The work was supported by the European Regional Development Fund under the project “Investigation of interplay between multiple determinants influencing response to metformin: search for reliable predictors for efficacy of type 2 diabetes therapy” (Project Nr.: 1.1.1.1/16/A/091). Publisher Copyright: © 2018 The Author(s).Background: Metformin is a widely prescribed antihyperglycemic agent that has been also associated with multiple therapeutic effects in various diseases, including several types of malignancies. There is growing evidence regarding the contribution of the epigenetic mechanisms in reaching metformin's therapeutic goals; however, the effect of metformin on human cells in vivo is not comprehensively studied. The aim of our study was to examine metformin-induced alterations of DNA methylation profiles in white blood cells of healthy volunteers, employing a longitudinal study design. Results: Twelve healthy metformin-naïve individuals where enrolled in the study. Genome-wide DNA methylation pattern was estimated at baseline, 10 h and 7 days after the start of metformin administration. The whole-genome DNA methylation analysis in total revealed 125 differentially methylated CpGs, of which 11 CpGs and their associated genes with the most consistent changes in the DNA methylation profile were selected: POFUT2, CAMKK1, EML3, KIAA1614, UPF1, MUC4, LOC727982, SIX3, ADAM8, SNORD12B, VPS8, and several differentially methylated regions as novel potential epigenetic targets of metformin. The main functions of the majority of top-ranked differentially methylated loci and their representative cell signaling pathways were linked to the well-known metformin therapy targets: regulatory processes of energy homeostasis, inflammatory responses, tumorigenesis, and neurodegenerative diseases. Conclusions: Here we demonstrate for the first time the immediate effect of short-term metformin administration at therapeutic doses on epigenetic regulation in human white blood cells. These findings suggest the DNA methylation process as one of the mechanisms involved in the action of metformin, thereby revealing novel targets and directions of the molecular mechanisms underlying the various beneficial effects of metformin. Trial registration: EU Clinical Trials Register, 2016-001092-74. Registered 23 March 2017, https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001092-74/LV.Peer reviewe

    Single nucleotide polymorphisms in the intergenic region between metformin transporter OCT2 and OCT3 coding genes are associated with short-Term response to metformin monotherapy in type 2 diabetes mellitus patients

    Get PDF
    Publisher Copyright: © 2016 The authors Published by Bioscientifica Ltd. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.Objective(s): High variability in clinical response to metformin is often observed in type 2 diabetes (T2D) patients, and it highlights the need for identification of genetic components affecting the efficiency of metformin therapy. Aim of this observational study is to evaluate the role of tagSNPs (tagging single nucleotide polymorphisms) from genomic regions coding for six metformin transporter genes with respect to the short-Term efficiency. Design: 102 tagSNPs in 6 genes coding for metformin transporters were genotyped in the group of 102 T2D patients treated with metformin for 3 months. Methods: Most significant hits were analyzed in the group of 131 T2D patients from Slovakia. Pharmacokinetic study in 25 healthy nondiabetic volunteers was conducted to investigate the effects of identified polymorphisms. Results: In the discovery group of 102 patients, minor alleles of rs3119309, rs7757336 and rs2481030 were significantly nominally associated with metformin inefficiency (P = 1.9 × 106 to 8.1 × 106). Effects of rs2481030 and rs7757336 did not replicate in the group of 131 T2DM patients from Slovakia alone, whereas rs7757336 was significantly associated with a reduced metformin response in combined group. In pharmacokinetic study, group of individuals harboring risk alleles of rs7757336 and rs2481030 displayed significantly reduced AUC∞ of metformin in plasma. Conclusions: For the first time, we have identified an association between the lack of metformin response and SNPs rs3119309 and rs7757336 located in the 5 flanking region of the genes coding for Organic cation transporter 2 and rs2481030 located in the 5 flanking region of Organic cation transporter 3 that was supported by the results of a pharmacokinetic study on 25 healthy volunteers.publishersversionPeer reviewe

    First Report on the Latvian SARS-CoV-2 Isolate Genetic Diversity

    Get PDF
    Copyright © 2021 Zrelovs, Ustinova, Silamikelis, Birzniece, Megnis, Rovite, Freimane, Silamikele, Ansone, Pjalkovskis, Fridmanis, Vilne, Priedite, Caica, Gavars, Perminov, Storozenko, Savicka, Dimina, Dumpis and Klovins.Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, 9 days prior to the pandemic declaration by WHO. Since then, more than 277,000 tests were carried out confirming a total of 1,464 cases of coronavirus disease 2019 (COVID-19) in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the "first coronavirus wave" in the country (early March, 2020-mid-September, 2020) being completely sequenced as of today, here, we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.publishersversionPeer reviewe

    Metformin strongly affects transcriptome of peripheral blood cells in healthy individuals

    Get PDF
    Funding Information: The study was supported by the European Regional Development Fund under the project ?Investigation of interplay between multiple determinants influencing response to metformin: search for reliable predictors for efficacy of type 2 diabetes therapy? (Project No.: 1.1.1.1/16/A/091, https://ec.europa.eu/regional_policy/en/funding/ erdf/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would like to thank all the volunteers for their participation and acknowledge the Genome Database of the Latvian Population for providing biological material and data. Publisher Copyright: © 2019 Ustinova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Metformin is a commonly used antihyperglycaemic agent for the treatment of type 2 diabetes mellitus. Nevertheless, the exact mechanisms of action, underlying the various therapeutic effects of metformin, remain elusive. The goal of this study was to evaluate the alterations in longitudinal whole-blood transcriptome profiles of healthy individuals after a one-week metformin intervention in order to identify the novel molecular targets and further prompt the discovery of predictive biomarkers of metformin response. Next generation sequencing-based transcriptome analysis revealed metformin-induced differential expression of genes involved in intestinal immune network for IgA production and cytokine-cytokine receptor interaction pathways. Significantly elevated faecal sIgA levels during administration of metformin, and its correlation with the expression of genes associated with immune response (CXCR4, HLA-DQA1, MAP3K14, TNFRSF21, CCL4, ACVR1B, PF4, EPOR, CXCL8) supports a novel hypothesis of strong association between metformin and intestinal immune system, and for the first time provide evidence for altered RNA expression as a contributing mechanism of metformin’s action. In addition to universal effects, 4 clusters of functionally related genes with a subject-specific differential expression were distinguished, including genes relevant to insulin production (HNF1B, HNF1A, HNF4A, GCK, INS, NEUROD1, PAX4, PDX1, ABCC8, KCNJ11) and cholesterol homeostasis (APOB, LDLR, PCSK9). This inter-individual variation of the metformin effect on the transcriptional regulation goes in line with well-known variability of the therapeutic response to the drug.publishersversionPeer reviewe

    Sorting out the Superbugs: Potential of Sortase A Inhibitors among Other Antimicrobial Strategies to Tackle the Problem of Antibiotic Resistance

    No full text
    Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bringing humanity towards the “post-antibiotic” era. The emergence of so-called “superbugs”—pathogen strains that develop resistance to multiple conventional antibiotics—is urging researchers around the globe to work on the development or perfecting of alternative means of tackling the pathogenic bacteria infections. Although various conceptually different approaches are being considered, each comes with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented by both Gram(+) and Gram(−) bacteria, possible target spectrum across the proposed alternative approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing the pathogenicity of target bacteria rather than eliminating them are being considered among such alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other alternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript, results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their potency were summarized and commented on. Here, we discussed the rationale behind the inhibition of SrtA, raised some concerns on the comparability of the results from different studies, and touched upon the possible resistance mechanisms as a response to implementation of such therapy in practice. The goal of this article is to encourage further studies of SrtA inhibitory compounds

    Botrytis four species are associated with chocolate spot disease of faba bean in Latvia

    Get PDF
    Faba bean (Vicia faba L.) is gaining importance as a crop in northern Europe. In this region, the most important disease of faba bean is chocolate spot disease, attributed to the pathogen Botrytis fabae. However, other Botrytis species have been found to contribute to the disease. Hence, it was decided to isolate fungi from faba bean plants showing symptoms of chocolate spot disease in Latvia, identify the Botrytis species using the DNA sequences of three definitive genes, evaluate the morphological diversity of the isolates in vitro and, finally, to determine the pathogenicity of the isolates in a detached-leaf test. In addition to B. fabae, B. cinerea, B. pseudocinerea and B. fabiopsis were all identified. Phylogenetic analysis of the DNA sequences put all the obtained 44 isolates unequivocally into clusters with known examples of each species. Every species showed wide diversity in its in vitro colour, texture and growing pattern of mycelium, production of sclerotia and pigmentation of the growing medium with much overlap between species showing that this method is not adequate for species discrimination. B. fabae produced the largest lesions on infected leaves, followed closely by B. pseudocinerea and B. cinerea, while B. fabiopsis produced much smaller lesions. The results show that chocolate spot disease of faba bean is attributable to Botrytis four species in northern Europe. This knowledge needs to be considered when controlling the disease by genetic or agronomic means.Peer reviewe

    Ryegrass mottle virus complete genome determination and development of infectious cDNA by combining two methods- 3' RACE and RNA-Seq.

    No full text
    Ryegrass mottle virus (RGMoV; genus: Sobemovirus) is a single-stranded positive RNA virus with a 30 nm viral particle size. It exhibits T = 3 symmetry with 180 coat protein (CP) subunits forming a viral structure. The RGMoV genome comprises five open reading frames that encode P1, Px, a membrane-anchored 3C-like serine protease, a viral genome-linked protein, P16, an RNA-dependent RNA polymerase, and CP. The RGMoV genome size varies, ranging from 4175 nt (MW411579.1) to 4253 nt (MW411579.1) in the deposited sequences. An earlier deposited RGMoV complete genome sequence of 4212 nt length (EF091714.1) was used to develop an infectious complementary DNA (icDNA) construct for in vitro gRNA transcription from the T7 promoter. However, viral infection was not induced when the transcribed gRNA was introduced into oat plants, indicating the potential absence of certain sequences in either the 5' or 3' untranslated regions (UTR) or both. The complete sequence of the 3' UTR was determined through 3' end RACE, while the 5' UTR was identified using high-throughput sequencing (HTS)-RNA-Seq to resolve the potential absences. Only the icDNA vector containing the newly identified UTR sequences proved infectious, resulting in typical viral infection symptoms and subsequent propagation of progeny viruses, exhibiting the ability to cause repeated infections in oat plants after at least one passage. The successful generation of icDNA highlighted the synergistic potential of utilizing both methods when a single approach failed. Furthermore, this study demonstrated the reliability of HTS as a method for determining the complete genome sequence of viral genomes
    corecore